深度神经网络 广告相似人群扩展

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import pandas as pd
import tensorflow as tf
 
TRAIN_URL = "http://download.tensorflow.org/data/iris_training.csv"
TEST_URL = "http://download.tensorflow.org/data/iris_test.csv"
 
# CSV_COLUMN_NAMES = ['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth', 'Species']
# CSV_COLUMN_NAMES = 'label,age,gender,education,consumptionAbility,LBS,house'.split(',')
CSV_COLUMN_NAMES = 'label,age,gender,education,consumptionAbility,house'.split(',')
# SPECIES = ['Setosa', 'Versicolor', 'Virginica']
# label,age,gender,education,consumptionAbility,LBS,house
# label,age,gender,education,consumptionAbility,LBS,house
SPECIES = [0, 1]
#SPECIES = [1, 0]
 
 
def maybe_download():
    # train_path = tf.keras.utils.get_file(TRAIN_URL.split('/')[-1], TRAIN_URL)
    # test_path = tf.keras.utils.get_file(TEST_URL.split('/')[-1], TEST_URL)
    #
    # return train_path, test_path
    # return 'iris_training.csv', 'iris_test.csv'
    return 'myu_oriv_tB.csv', 'myu_oriv_rB.csv'
 
 
# def load_data(label_name='Species'):
def load_data(label_name='label'):
    train_path, test_path = maybe_download()
 
    """Parses the csv file in TRAIN_URL and TEST_URL."""
 
    # Create a local copy of the training set.
    # train_path = tf.keras.utils.get_file(fname=TRAIN_URL.split('/')[-1],
    #                                      origin=TRAIN_URL)
    # train_path now holds the pathname: ~/.keras/datasets/iris_training.csv
 
    # Parse the local CSV file.
    train = pd.read_csv(filepath_or_buffer=train_path,
                        names=CSV_COLUMN_NAMES,  # list of column names
                        header=0  # ignore the first row of the CSV file.
                        )
    # train now holds a pandas DataFrame, which is data structure
    # analogous to a table.
 
    # 1. Assign the DataFrame's labels (the right-most column) to train_label.
    # 2. Delete (pop) the labels from the DataFrame.
    # 3. Assign the remainder of the DataFrame to train_features
 
    #   label_name = y_name
    train_features, train_label = train, train.pop(label_name)
 
    # Apply the preceding logic to the test set.
    # test_path = tf.keras.utils.get_file(TEST_URL.split('/')[-1], TEST_URL)
    test = pd.read_csv(test_path, names=CSV_COLUMN_NAMES, header=0)
    test_features, test_label = test, test.pop(label_name)
 
    # Return four DataFrames.
    return (train_features, train_label), (test_features, test_label)
 
 
def train_input_fn(features, labels, batch_size):
    """An input function for training"""
    # Convert the inputs to a Dataset.
    dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
 
    # Shuffle, repeat, and batch the examples.
    #  dataset = dataset.shuffle(1000).repeat().batch(batch_size)
    dataset = dataset.shuffle(3).repeat().batch(batch_size)
 
    # Return the dataset.
    return dataset
 
 
def eval_input_fn(features, labels, batch_size):
    """An input function for evaluation or prediction"""
    features = dict(features)
    if labels is None:
        # No labels, use only features.
        inputs = features
    else:
        inputs = (features, labels)
 
    # Convert the inputs to a Dataset.
    dataset = tf.data.Dataset.from_tensor_slices(inputs)
 
    # Batch the examples
    assert batch_size is not None, "batch_size must not be None"
    dataset = dataset.batch(batch_size)
 
    # Return the dataset.
    return dataset
 
 
# The remainder of this file contains a simple example of a csv parser,
#     implemented using a the `Dataset` class.
 
# `tf.parse_csv` sets the types of the outputs to match the examples given in
#     the `record_defaults` argument.
# CSV_TYPES = [[0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]]
CSV_TYPES = [[0], [0], [0], [0], [0], [0], [0]]
CSV_TYPES = [[0], [0], [0], [0], [0], [0]]
 
 
def _parse_line(line):
    # Decode the line into its fields
    fields = tf.decode_csv(line, record_defaults=CSV_TYPES)
 
    # Pack the result into a dictionary
    features = dict(zip(CSV_COLUMN_NAMES, fields))
 
    # Separate the label from the features
   # label = features.pop('Species')
    label = features.pop('label')
 
    return features, label
 
 
def csv_input_fn(csv_path, batch_size):
    # Create a dataset containing the text lines.
    dataset = tf.data.TextLineDataset(csv_path).skip(1)
 
    # Parse each line.
    dataset = dataset.map(_parse_line)
 
    # Shuffle, repeat, and batch the examples.
    # dataset = dataset.shuffle(1000).repeat().batch(batch_size)
    dataset = dataset.shuffle(2).repeat().batch(batch_size)
 
    # Return the dataset.
    return dataset

  

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#  Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""An Example of a DNNClassifier for the Iris dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
 
import argparse
import tensorflow as tf
 
import qq_iris_data_mystudy
 
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=2, type=int, help='batch size')
parser.add_argument('--train_steps', default=2, type=int,
                    help='number of training steps')
 
res_f = 'res.txt'
with open(res_f, 'w', encoding='utf-8') as fw:
    fw.write('')
 
 
def main(argv):
    args = parser.parse_args(argv[1:])
 
    # Fetch the data
    (train_x, train_y), (test_x, test_y) = qq_iris_data_mystudy.load_data()
 
    my_feature_columns, predict_x = [], {}
    for key in train_x.keys():
        my_feature_columns.append(tf.feature_column.numeric_column(key=key))
        #predict_x[key] = [float(i) for i in test_x[key].values]
        predict_x[key] = [int(i) for i in test_x[key].values]
    expected = [0 for i in predict_x[key]]
 
    # Build 2 hidden layer DNN with 10, 10 units respectively.
    classifier = tf.estimator.DNNClassifier(
        feature_columns=my_feature_columns,
        # Two hidden layers of 10 nodes each.
        hidden_units=[10, 10],
        # The model must choose between 3 classes.
        n_classes=2)
 
    # Train the Model.
    classifier.train(
        input_fn=lambda: qq_iris_data_mystudy.train_input_fn(train_x, train_y,
                                                             args.batch_size),
        steps=args.train_steps)
 
    # Evaluate the model.
    eval_result = classifier.evaluate(
        input_fn=lambda: qq_iris_data_mystudy.eval_input_fn(test_x, test_y,
                                                            args.batch_size))
 
    print('\nTest set accuracy: {accuracy:0.3f}\n'.format(**eval_result))
 
    predictions = classifier.predict(
        input_fn=lambda: qq_iris_data_mystudy.eval_input_fn(predict_x,
                                                            labels=None,
                                                            batch_size=args.batch_size))
 
    template = ('\nmyProgress{}/{}ORI{}||RESULT{}|| Prediction is "{}" ({:.1f}%), expected "{}"')
 
    c, c_all_ = 0, len(expected)
    for pred_dict, expec in zip(predictions, expected):
        class_id = pred_dict['class_ids'][0]
        probability = pred_dict['probabilities'][class_id]
        ori = ','.join([str(predict_x[k][c]) for k in predict_x])
        print(template.format(c, c_all_, ori, str(pred_dict), qq_iris_data_mystudy.SPECIES[class_id],
                              100 * probability, expec))
        c += 1
 
 
        fw_s = '{}---{}\n'.format(ori,pred_dict['probabilities'][1])
        with open(res_f, 'a', encoding='utf-8') as fw:
            fw.write(fw_s)
 
 
if __name__ == '__main__':
    tf.logging.set_verbosity(tf.logging.INFO)
    tf.app.run(main)

  

 

posted @   papering  阅读(595)  评论(0编辑  收藏  举报
点击右上角即可分享
微信分享提示