深度神经网络 广告相似人群扩展
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | import pandas as pd import tensorflow as tf TRAIN_URL = "http://download.tensorflow.org/data/iris_training.csv" TEST_URL = "http://download.tensorflow.org/data/iris_test.csv" # CSV_COLUMN_NAMES = ['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth', 'Species'] # CSV_COLUMN_NAMES = 'label,age,gender,education,consumptionAbility,LBS,house'.split(',') CSV_COLUMN_NAMES = 'label,age,gender,education,consumptionAbility,house' .split( ',' ) # SPECIES = ['Setosa', 'Versicolor', 'Virginica'] # label,age,gender,education,consumptionAbility,LBS,house # label,age,gender,education,consumptionAbility,LBS,house SPECIES = [ 0 , 1 ] #SPECIES = [1, 0] def maybe_download(): # train_path = tf.keras.utils.get_file(TRAIN_URL.split('/')[-1], TRAIN_URL) # test_path = tf.keras.utils.get_file(TEST_URL.split('/')[-1], TEST_URL) # # return train_path, test_path # return 'iris_training.csv', 'iris_test.csv' return 'myu_oriv_tB.csv' , 'myu_oriv_rB.csv' # def load_data(label_name='Species'): def load_data(label_name = 'label' ): train_path, test_path = maybe_download() """Parses the csv file in TRAIN_URL and TEST_URL.""" # Create a local copy of the training set. # train_path = tf.keras.utils.get_file(fname=TRAIN_URL.split('/')[-1], # origin=TRAIN_URL) # train_path now holds the pathname: ~/.keras/datasets/iris_training.csv # Parse the local CSV file. train = pd.read_csv(filepath_or_buffer = train_path, names = CSV_COLUMN_NAMES, # list of column names header = 0 # ignore the first row of the CSV file. ) # train now holds a pandas DataFrame, which is data structure # analogous to a table. # 1. Assign the DataFrame's labels (the right-most column) to train_label. # 2. Delete (pop) the labels from the DataFrame. # 3. Assign the remainder of the DataFrame to train_features # label_name = y_name train_features, train_label = train, train.pop(label_name) # Apply the preceding logic to the test set. # test_path = tf.keras.utils.get_file(TEST_URL.split('/')[-1], TEST_URL) test = pd.read_csv(test_path, names = CSV_COLUMN_NAMES, header = 0 ) test_features, test_label = test, test.pop(label_name) # Return four DataFrames. return (train_features, train_label), (test_features, test_label) def train_input_fn(features, labels, batch_size): """An input function for training""" # Convert the inputs to a Dataset. dataset = tf.data.Dataset.from_tensor_slices(( dict (features), labels)) # Shuffle, repeat, and batch the examples. # dataset = dataset.shuffle(1000).repeat().batch(batch_size) dataset = dataset.shuffle( 3 ).repeat().batch(batch_size) # Return the dataset. return dataset def eval_input_fn(features, labels, batch_size): """An input function for evaluation or prediction""" features = dict (features) if labels is None : # No labels, use only features. inputs = features else : inputs = (features, labels) # Convert the inputs to a Dataset. dataset = tf.data.Dataset.from_tensor_slices(inputs) # Batch the examples assert batch_size is not None , "batch_size must not be None" dataset = dataset.batch(batch_size) # Return the dataset. return dataset # The remainder of this file contains a simple example of a csv parser, # implemented using a the `Dataset` class. # `tf.parse_csv` sets the types of the outputs to match the examples given in # the `record_defaults` argument. # CSV_TYPES = [[0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]] CSV_TYPES = [[ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ]] CSV_TYPES = [[ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ]] def _parse_line(line): # Decode the line into its fields fields = tf.decode_csv(line, record_defaults = CSV_TYPES) # Pack the result into a dictionary features = dict ( zip (CSV_COLUMN_NAMES, fields)) # Separate the label from the features # label = features.pop('Species') label = features.pop( 'label' ) return features, label def csv_input_fn(csv_path, batch_size): # Create a dataset containing the text lines. dataset = tf.data.TextLineDataset(csv_path).skip( 1 ) # Parse each line. dataset = dataset. map (_parse_line) # Shuffle, repeat, and batch the examples. # dataset = dataset.shuffle(1000).repeat().batch(batch_size) dataset = dataset.shuffle( 2 ).repeat().batch(batch_size) # Return the dataset. return dataset |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | # Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """An Example of a DNNClassifier for the Iris dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import tensorflow as tf import qq_iris_data_mystudy parser = argparse.ArgumentParser() parser.add_argument( '--batch_size' , default = 2 , type = int , help = 'batch size' ) parser.add_argument( '--train_steps' , default = 2 , type = int , help = 'number of training steps' ) res_f = 'res.txt' with open (res_f, 'w' , encoding = 'utf-8' ) as fw: fw.write('') def main(argv): args = parser.parse_args(argv[ 1 :]) # Fetch the data (train_x, train_y), (test_x, test_y) = qq_iris_data_mystudy.load_data() my_feature_columns, predict_x = [], {} for key in train_x.keys(): my_feature_columns.append(tf.feature_column.numeric_column(key = key)) #predict_x[key] = [float(i) for i in test_x[key].values] predict_x[key] = [ int (i) for i in test_x[key].values] expected = [ 0 for i in predict_x[key]] # Build 2 hidden layer DNN with 10, 10 units respectively. classifier = tf.estimator.DNNClassifier( feature_columns = my_feature_columns, # Two hidden layers of 10 nodes each. hidden_units = [ 10 , 10 ], # The model must choose between 3 classes. n_classes = 2 ) # Train the Model. classifier.train( input_fn = lambda : qq_iris_data_mystudy.train_input_fn(train_x, train_y, args.batch_size), steps = args.train_steps) # Evaluate the model. eval_result = classifier.evaluate( input_fn = lambda : qq_iris_data_mystudy.eval_input_fn(test_x, test_y, args.batch_size)) print ( '\nTest set accuracy: {accuracy:0.3f}\n' . format ( * * eval_result)) predictions = classifier.predict( input_fn = lambda : qq_iris_data_mystudy.eval_input_fn(predict_x, labels = None , batch_size = args.batch_size)) template = ( '\nmyProgress{}/{}ORI{}||RESULT{}|| Prediction is "{}" ({:.1f}%), expected "{}"' ) c, c_all_ = 0 , len (expected) for pred_dict, expec in zip (predictions, expected): class_id = pred_dict[ 'class_ids' ][ 0 ] probability = pred_dict[ 'probabilities' ][class_id] ori = ',' .join([ str (predict_x[k][c]) for k in predict_x]) print (template. format (c, c_all_, ori, str (pred_dict), qq_iris_data_mystudy.SPECIES[class_id], 100 * probability, expec)) c + = 1 fw_s = '{}---{}\n' . format (ori,pred_dict[ 'probabilities' ][ 1 ]) with open (res_f, 'a' , encoding = 'utf-8' ) as fw: fw.write(fw_s) if __name__ = = '__main__' : tf.logging.set_verbosity(tf.logging.INFO) tf.app.run(main) |
【推荐】还在用 ECharts 开发大屏?试试这款永久免费的开源 BI 工具!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步