内存地址 Memory Management

内存管理 — Python 3.11.3 文档 https://docs.python.org/zh-cn/3/c-api/memory.html

在 Python 中,内存管理涉及到一个包含所有 Python 对象和数据结构的私有堆(heap)。这个私有堆的管理由内部的 Python 内存管理器(Python memory manager) 保证。Python 内存管理器有不同的组件来处理各种动态存储管理方面的问题,如共享、分割、预分配或缓存。

在最底层,一个原始内存分配器通过与操作系统的内存管理器交互,确保私有堆中有足够的空间来存储所有与 Python 相关的数据。在原始内存分配器的基础上,几个对象特定的分配器在同一堆上运行,并根据每种对象类型的特点实现不同的内存管理策略。例如,整数对象在堆内的管理方式不同于字符串、元组或字典,因为整数需要不同的存储需求和速度与空间的权衡。因此,Python 内存管理器将一些工作分配给对象特定分配器,但确保后者在私有堆的范围内运行。

Python 堆内存的管理是由解释器来执行,用户对它没有控制权,即使他们经常操作指向堆内内存块的对象指针,理解这一点十分重要。Python 对象和其他内部缓冲区的堆空间分配是由 Python 内存管理器按需通过本文档中列出的 Python/C API 函数进行的。

为了避免内存破坏,扩展的作者永远不应该试图用 C 库函数导出的函数来对 Python 对象进行操作,这些函数包括: malloc()calloc()realloc() 和 free()。这将导致 C 分配器和 Python 内存管理器之间的混用,引发严重后果,这是由于它们实现了不同的算法,并在不同的堆上操作。但是,我们可以安全地使用 C 库分配器为单独的目的分配和释放内存块,如下例所示:

PyObject *res;
char *buf = (char *) malloc(BUFSIZ); /* for I/O */

if (buf == NULL)
    return PyErr_NoMemory();
...Do some I/O operation involving buf...
res = PyBytes_FromString(buf);
free(buf); /* malloc'ed */
return res;

在这个例子中,I/O 缓冲区的内存请求是由 C 库分配器处理的。Python 内存管理器只参与了分配作为结果返回的字节对象。

In most situations, however, it is recommended to allocate memory from the Python heap specifically because the latter is under control of the Python memory manager. For example, this is required when the interpreter is extended with new object types written in C. Another reason for using the Python heap is the desire to inform the Python memory manager about the memory needs of the extension module. Even when the requested memory is used exclusively for internal, highly specific purposes, delegating all memory requests to the Python memory manager causes the interpreter to have a more accurate image of its memory footprint as a whole. Consequently, under certain circumstances, the Python memory manager may or may not trigger appropriate actions, like garbage collection, memory compaction or other preventive procedures. Note that by using the C library allocator as shown in the previous example, the allocated memory for the I/O buffer escapes completely the Python memory manager.

参见

 

环境变量 PYTHONMALLOC 可被用来配置 Python 所使用的内存分配器。

环境变量 PYTHONMALLOCSTATS 可以用来在每次创建和关闭新的 pymalloc 对象区域时打印 pymalloc 内存分配器 的统计数据。

分配器域

所有分配函数都属于三个不同的“分配器域”之一(见 PyMemAllocatorDomain)。这些域代表了不同的分配策略,并为不同目的进行了优化。每个域如何分配内存和每个域调用哪些内部函数的具体细节被认为是实现细节,但是出于调试目的,可以在 此处 找到一张简化的表格。没有硬性要求将属于给定域的分配函数返回的内存,仅用于该域提示的目的(虽然这是推荐的做法)。例如,你可以将 PyMem_RawMalloc() 返回的内存用于分配 Python 对象,或者将 PyObject_Malloc() 返回的内存用作缓冲区。

三个分配域分别是:

  • 原始域:用于为通用内存缓冲区分配内存,分配*必须*转到系统分配器并且分配器可以在没有 GIL 的情况下运行。内存直接请求自系统。

  • "Mem" 域:用于为 Python 缓冲区和通用内存缓冲区分配内存,分配时必须持有 GIL。内存取自于 Python 私有堆。

  • 对象域:用于分配属于 Python 对象的内存。内存取自于 Python 私有堆。

当释放属于给定域的分配函数先前分配的内存时,必须使用对应的释放函数。例如,PyMem_Free() 来释放 PyMem_Malloc() 分配的内存。

原始内存接口

以下函数集封装了系统分配器。这些函数是线程安全的,不需要持有 全局解释器锁

default raw memory allocator 使用这些函数:malloc()、 calloc()、 realloc() 和 free();申请零字节时则调用 malloc(1) (或 calloc(1, 1)

3.4 新版功能.

void *PyMem_RawMalloc(size_t n)

Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

请求零字节可能返回一个独特的非 NULL 指针,就像调用了 PyMem_RawMalloc(1) 一样。但是内存不会以任何方式被初始化。

void *PyMem_RawCalloc(size_t nelem, size_t elsize)

Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated memory, or NULL if the request fails. The memory is initialized to zeros.

请求零字节可能返回一个独特的非 NULL 指针,就像调用了 PyMem_RawCalloc(1, 1) 一样。

3.5 新版功能.

void *PyMem_RawRealloc(void *p, size_t n)

将 p 指向的内存块大小调整为 n 字节。以新旧内存块大小中的最小值为准,其中内容保持不变,

如果 p 是 NULL ,则相当于调用 PyMem_RawMalloc(n) ;如果 n 等于 0,则内存块大小会被调整,但不会被释放,返回非 NULL 指针。

除非 p 是 NULL ,否则它必须是之前调用 PyMem_RawMalloc() 、 PyMem_RawRealloc() 或 PyMem_RawCalloc() 所返回的。

如果请求失败,PyMem_RawRealloc() 返回 NULL , p 仍然是指向先前内存区域的有效指针。

void PyMem_RawFree(void *p)

释放 p 指向的内存块。 p 必须是之前调用 PyMem_RawMalloc() 、 PyMem_RawRealloc() 或 PyMem_RawCalloc() 所返回的指针。否则,或在 PyMem_RawFree(p) 之前已经调用过的情况下,未定义的行为会发生。

如果 p 是 NULL, 那么什么操作也不会进行。

内存接口

以下函数集,仿照 ANSI C 标准,并指定了请求零字节时的行为,可用于从Python堆分配和释放内存。

默认内存分配器 使用了 pymalloc 内存分配器.

警告

 

在使用这些函数时,必须持有 全局解释器锁(GIL) 。

在 3.6 版更改: 现在默认的分配器是 pymalloc 而非系统的 malloc() 。

void *PyMem_Malloc(size_t n)
Part of the Stable ABI.

Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

请求零字节可能返回一个独特的非 NULL 指针,就像调用了 PyMem_Malloc(1) 一样。但是内存不会以任何方式被初始化。

void *PyMem_Calloc(size_t nelem, size_t elsize)
Part of the Stable ABI since version 3.7.

Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated memory, or NULL if the request fails. The memory is initialized to zeros.

请求零字节可能返回一个独特的非 NULL 指针,就像调用了 PyMem_Calloc(1, 1) 一样。

3.5 新版功能.

void *PyMem_Realloc(void *p, size_t n)
Part of the Stable ABI.

将 p 指向的内存块大小调整为 n 字节。以新旧内存块大小中的最小值为准,其中内容保持不变,

如果 p 是 NULL ,则相当于调用 PyMem_Malloc(n) ;如果 n 等于 0,则内存块大小会被调整,但不会被释放,返回非 NULL 指针。

除非 p 是 NULL ,否则它必须是之前调用 PyMem_Malloc() 、 PyMem_Realloc() 或 PyMem_Calloc() 所返回的。

如果请求失败,PyMem_Realloc() 返回 NULL , p 仍然是指向先前内存区域的有效指针。

void PyMem_Free(void *p)
Part of the Stable ABI.

释放 p 指向的内存块。 p 必须是之前调用 PyMem_Malloc() 、 PyMem_Realloc() 或 PyMem_Calloc() 所返回的指针。否则,或在 PyMem_Free(p) 之前已经调用过的情况下,未定义的行为会发生。

如果 p 是 NULL, 那么什么操作也不会进行。

以下面向类型的宏为方便而提供。 注意 TYPE 可以指任何 C 类型。

TYPE *PyMem_New(TYPE, size_t n)

Same as PyMem_Malloc(), but allocates (n sizeof(TYPE)) bytes of memory. Returns a pointer cast to TYPE*. The memory will not have been initialized in any way.

TYPE *PyMem_Resize(void *p, TYPE, size_t n)

Same as PyMem_Realloc(), but the memory block is resized to (n sizeof(TYPE)) bytes. Returns a pointer cast to TYPE*. On return, p will be a pointer to the new memory area, or NULL in the event of failure.

这是一个 C 预处理宏, p 总是被重新赋值。请保存 p 的原始值,以避免在处理错误时丢失内存。

void PyMem_Del(void *p)

与 PyMem_Free() 相同

此外,我们还提供了以下宏集用于直接调用 Python 内存分配器,而不涉及上面列出的 C API 函数。但是请注意,使用它们并不能保证跨 Python 版本的二进制兼容性,因此在扩展模块被弃用。

  • PyMem_MALLOC(size)

  • PyMem_NEW(type, size)

  • PyMem_REALLOC(ptr, size)

  • PyMem_RESIZE(ptr, type, size)

  • PyMem_FREE(ptr)

  • PyMem_DEL(ptr)

对象分配器

以下函数集,仿照 ANSI C 标准,并指定了请求零字节时的行为,可用于从Python堆分配和释放内存。

备注

 

当通过 自定义内存分配器 部分描述的方法拦截该域中的分配函数时,无法保证这些分配器返回的内存可以被成功地转换成 Python 对象。

默认对象分配器 使用 pymalloc 内存分配器.

警告

 

在使用这些函数时,必须持有 全局解释器锁(GIL) 。

void *PyObject_Malloc(size_t n)
Part of the Stable ABI.

Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

请求零字节可能返回一个独特的非 NULL 指针,就像调用了 PyObject_Malloc(1) 一样。但是内存不会以任何方式被初始化。

void *PyObject_Calloc(size_t nelem, size_t elsize)
Part of the Stable ABI since version 3.7.

Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated memory, or NULL if the request fails. The memory is initialized to zeros.

请求零字节可能返回一个独特的非 NULL 指针,就像调用了 PyObject_Calloc(1, 1) 一样。

3.5 新版功能.

void *PyObject_Realloc(void *p, size_t n)
Part of the Stable ABI.

将 p 指向的内存块大小调整为 n 字节。以新旧内存块大小中的最小值为准,其中内容保持不变,

如果*p*是``NULL``,则相当于调用 PyObject_Malloc(n) ;如果 n 等于 0,则内存块大小会被调整,但不会被释放,返回非 NULL 指针。

除非 p 是 NULL ,否则它必须是之前调用 PyObject_Malloc() 、 PyObject_Realloc() 或 PyObject_Calloc() 所返回的。

如果请求失败,PyObject_Realloc() 返回 NULL , p 仍然是指向先前内存区域的有效指针。

void PyObject_Free(void *p)
Part of the Stable ABI.

释放 p 指向的内存块。 p 必须是之前调用 PyObject_Malloc() 、 PyObject_Realloc() 或 PyObject_Calloc() 所返回的指针。否则,或在 PyObject_Free(p) 之前已经调用过的情况下,未定义行为会发生。

如果 p 是 NULL, 那么什么操作也不会进行。

默认内存分配器

默认内存分配器:

配置

名称

PyMem_RawMalloc

PyMem_Malloc

PyObject_Malloc

发布版本

"pymalloc"

malloc

pymalloc

pymalloc

调试构建

"pymalloc_debug"

malloc + debug

pymalloc + debug

pymalloc + debug

没有 pymalloc 的发布版本

"malloc"

malloc

malloc

malloc

没有 pymalloc 的调试构建

"malloc_debug"

malloc + debug

malloc + debug

malloc + debug

说明:

自定义内存分配器

3.4 新版功能.

type PyMemAllocatorEx

用于描述内存块分配器的结构体。 该结构体下列字段:

含意

void *ctx

作为第一个参数传入的用户上下文

void* malloc(void *ctx, size_t size)

分配一个内存块

void* calloc(void *ctx, size_t nelem, size_t elsize)

分配一个初始化为 0 的内存块

void* realloc(void *ctx, void *ptr, size_t new_size)

分配一个内存块或调整其大小

void free(void *ctx, void *ptr)

释放一个内存块

在 3.5 版更改: The PyMemAllocator structure was renamed to PyMemAllocatorEx and a new calloc field was added.

type PyMemAllocatorDomain

用来识别分配器域的枚举类。域有:

PYMEM_DOMAIN_RAW

函数

PYMEM_DOMAIN_MEM

函数

PYMEM_DOMAIN_OBJ

函数

void PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)

获取指定域的内存块分配器。

void PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)

设置指定域的内存块分配器。

当请求零字节时,新的分配器必须返回一个独特的非 NULL 指针。

对于 PYMEM_DOMAIN_RAW 域,分配器必须是线程安全的:当分配器被调用时,不持有 全局解释器锁 。

如果新的分配器不是钩子(不调用之前的分配器),必须调用 PyMem_SetupDebugHooks() 函数在新分配器上重新安装调试钩子。

See also PyPreConfig.allocator and Preinitialize Python with PyPreConfig.

警告

 

PyMem_SetAllocator() does have the following contract:

  • It can be called after Py_PreInitialize() and before Py_InitializeFromConfig() to install a custom memory allocator. There are no restrictions over the installed allocator other than the ones imposed by the domain (for instance, the Raw Domain allows the allocator to be called without the GIL held). See the section on allocator domains for more information.

  • If called after Python has finish initializing (after Py_InitializeFromConfig() has been called) the allocator must wrap the existing allocator. Substituting the current allocator for some other arbitrary one is not supported.

void PyMem_SetupDebugHooks(void)

设置 Python 内存分配器的调试钩子 以检测内存错误。

Python 内存分配器的调试钩子

当 Python 在调试模式下构建PyMem_SetupDebugHooks() 函数在 Python 预初始化 时被调用,以在 Python 内存分配器上设置调试钩子以检测内存错误。

PYTHONMALLOC 环境变量可被用于在以发行模式下编译的 Python 上安装调试钩子(例如:PYTHONMALLOC=debug)。

PyMem_SetupDebugHooks() 函数可被用于在调用了 PyMem_SetAllocator() 之后设置调试钩子。

这些调试钩子用特殊的、可辨认的位模式填充动态分配的内存块。新分配的内存用字节 0xCD``(``PYMEM_CLEANBYTE)填充,释放的内存用字节 0xDD``(``PYMEM_DEADBYTE)填充。内存块被填充了字节 0xFD``(``PYMEM_FORBIDDENBYTE)的“禁止字节”包围。这些字节串不太可能是合法的地址、浮点数或ASCII字符串

运行时检查:

  • 检测对 API 的违反。例如:检测对 PyMem_Malloc() 分配的内存块调用 PyObject_Free()

  • 检测缓冲区起始位置前的写入(缓冲区下溢)。

  • 检测缓冲区终止位置后的写入(缓冲区溢出)。

  • 检测当调用 PYMEM_DOMAIN_OBJ (如: PyObject_Malloc()) 和 PYMEM_DOMAIN_MEM (如: PyMem_Malloc()) 域的分配器函数时 GIL 已被持有。

在出错时,调试钩子使用 tracemalloc 模块来回溯内存块被分配的位置。只有当 tracemalloc 正在追踪 Python 内存分配,并且内存块被追踪时,才会显示回溯。

让 S = sizeof(size_t)。 将 2*S 个字节添加到每个被请求的 N 字节数据块的两端。 内存的布局像是这样,其中 p 代表由类似 malloc 或类似 realloc 的函数所返回的地址 (p[i:j] 表示从 *(p+i) 左侧开始到 *(p+j) 左侧止的字节数据切片;请注意对负索引号的处理与 Python 切片是不同的):

p[-2*S:-S]

最初所要求的字节数。 这是一个 size_t,为大端序(易于在内存转储中读取)。

p[-S]

API 标识符(ASCII 字符):

  • 'r' 表示 PYMEM_DOMAIN_RAW

  • 'm' 表示 PYMEM_DOMAIN_MEM

  • 'o' 表示 PYMEM_DOMAIN_OBJ

p[-S+1:0]

PYMEM_FORBIDDENBYTE 的副本。 用于捕获下层的写入和读取。

p[0:N]

所请求的内存,用 PYMEM_CLEANBYTE 的副本填充,用于捕获对未初始化内存的引用。 当调用 realloc 之类的函数来请求更大的内存块时,额外新增的字节也会用 PYMEM_CLEANBYTE 来填充。 当调用 free 之类的函数时,这些字节会用 PYMEM_DEADBYTE 来重写,以捕获对已释放内存的引用。 当调用 realloc 之类的函数来请求更小的内存块时,多余的旧字节也会用 PYMEM_DEADBYTE 来填充。

p[N:N+S]

PYMEM_FORBIDDENBYTE 的副本。 用于捕获超限的写入和读取。

p[N+S:N+2*S]

仅当定义了 PYMEM_DEBUG_SERIALNO 宏时会被使用(默认情况下将不定义)。

一个序列号,每次调用 malloc 之类或 realloc 之类的函数时自增 1。 大端序的 size_t。 如果之后检测到了“被破坏的内存”,此序列号提供了一个很好的手段用来在下次运行时设置中断点,以捕获该内存块被破坏的瞬间。 obmalloc.c 中的静态函数 bumpserialno() 是此序列号会发生自增的唯一地方,它的存在使你可以方便地设置这样的中断点。

一个 realloc 之类或 free 之类的函数会先检查两端的 PYMEM_FORBIDDENBYTE 字节是否完好。 如果它们被改变了,则会将诊断输出写入到 stderr,并且程序将通过 Py_FatalError() 中止。 另一种主要的失败模式是当程序读到某种特殊的比特模式并试图将其用作地址时触发内存错误。 如果你随即进入调试器并查看该对象,你很可能会看到它已完全被填充为 PYMEM_DEADBYTE (意味着已释放的内存被使用) 或 PYMEM_CLEANBYTE (意味着未初始货摊内存被使用)。

在 3.6 版更改: PyMem_SetupDebugHooks() 函数现在也能在使用发布模式编译的 Python 上工作。 当发生错误时,调试钩子现在会使用 tracemalloc 来获取已分配内存块的回溯信息。 调试钩子现在还会在 PYMEM_DOMAIN_OBJ 和 PYMEM_DOMAIN_MEM 作用域的函数被调用时检查是否持有 GIL。

在 3.8 版更改: 字节模式 0xCB (PYMEM_CLEANBYTE)、 0xDB (PYMEM_DEADBYTE) 和 0xFB (PYMEM_FORBIDDENBYTE) 已被 0xCD 、 0xDD 和 0xFD 替代以使用与 Windows CRT 调试 malloc() 和 free() 相同的值。

pymalloc 分配器

Python 有为具有短生命周期的小对象(小于或等于 512 字节)优化的 pymalloc 分配器。它使用固定大小为 256 KiB 的称为 "arenas" 的内存映射。对于大于512字节的分配,它回到使用 PyMem_RawMalloc() 和 PyMem_RawRealloc() 。

pymalloc 是 PYMEM_DOMAIN_MEM (例如: PyMem_Malloc()) 和 PYMEM_DOMAIN_OBJ (例如: PyObject_Malloc()) 域的 默认分配器 。

arena 分配器使用以下函数:

  • Windows 上的 VirtualAlloc() 和 VirtualFree() ,

  • mmap() 和 munmap() ,如果可用,

  • 否则, malloc() 和 free() 。

如果 Python 配置了 --without-pymalloc 选项,那么此分配器将被禁用。也可以在运行时使用 PYTHONMALLOC`(例如:``PYTHONMALLOC=malloc`)环境变量来禁用它。

自定义 pymalloc Arena 分配器

3.4 新版功能.

type PyObjectArenaAllocator

用来描述一个 arena 分配器的结构体。这个结构体有三个字段:

含意

void *ctx

作为第一个参数传入的用户上下文

void* alloc(void *ctx, size_t size)

分配一块 size 字节的区域

void free(void *ctx, void *ptr, size_t size)

释放一块区域

void PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator)

获取 arena 分配器

void PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator)

设置 arena 分配器

tracemalloc C API

3.7 新版功能.

int PyTraceMalloc_Track(unsigned int domain, uintptr_t ptr, size_t size)

在 tracemalloc 模块中跟踪一个已分配的内存块。

成功时返回 0,出错时返回 -1 (无法分配内存来保存跟踪信息)。 如果禁用了 tracemalloc 则返回 -2

如果内存块已被跟踪,则更新现有跟踪信息。

int PyTraceMalloc_Untrack(unsigned int domain, uintptr_t ptr)

在 tracemalloc 模块中取消跟踪一个已分配的内存块。 如果内存块未被跟踪则不执行任何操作。

如果 tracemalloc 被禁用则返回 -2,否则返回 0

例子

以下是来自 概述 小节的示例,经过重写以使 I/O 缓冲区是通过使用第一个函数集从 Python 堆中分配的:

PyObject *res;
char *buf = (char *) PyMem_Malloc(BUFSIZ); /* for I/O */

if (buf == NULL)
    return PyErr_NoMemory();
/* ...Do some I/O operation involving buf... */
res = PyBytes_FromString(buf);
PyMem_Free(buf); /* allocated with PyMem_Malloc */
return res;

使用面向类型函数集的相同代码:

PyObject *res;
char *buf = PyMem_New(char, BUFSIZ); /* for I/O */

if (buf == NULL)
    return PyErr_NoMemory();
/* ...Do some I/O operation involving buf... */
res = PyBytes_FromString(buf);
PyMem_Del(buf); /* allocated with PyMem_New */
return res;

请注意在以上两个示例中,缓冲区总是通过归属于相同集的函数来操纵的。 事实上,对于一个给定的内存块必须使用相同的内存 API 族,以便使得混合不同分配器的风险减至最低。 以下代码序列包含两处错误,其中一个被标记为 fatal 因为它混合了两种在不同堆上操作的不同分配器。

char *buf1 = PyMem_New(char, BUFSIZ);
char *buf2 = (char *) malloc(BUFSIZ);
char *buf3 = (char *) PyMem_Malloc(BUFSIZ);
...
PyMem_Del(buf3);  /* Wrong -- should be PyMem_Free() */
free(buf2);       /* Right -- allocated via malloc() */
free(buf1);       /* Fatal -- should be PyMem_Del()  */

除了旨在处理来自 Python 堆的原始内存块的函数之外, Python 中的对象是通过 PyObject_New()PyObject_NewVar() 和 PyObject_Del() 来分配和释放的。

 

Memory Management — Python 3.11.3 documentation https://docs.python.org/3/c-api/memory.html

Memory management in Python involves a private heap containing all Python objects and data structures. The management of this private heap is ensured internally by the Python memory manager. The Python memory manager has different components which deal with various dynamic storage management aspects, like sharing, segmentation, preallocation or caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing all Python-related data by interacting with the memory manager of the operating system. On top of the raw memory allocator, several object-specific allocators operate on the same heap and implement distinct memory management policies adapted to the peculiarities of every object type. For example, integer objects are managed differently within the heap than strings, tuples or dictionaries because integers imply different storage requirements and speed/space tradeoffs. The Python memory manager thus delegates some of the work to the object-specific allocators, but ensures that the latter operate within the bounds of the private heap.

It is important to understand that the management of the Python heap is performed by the interpreter itself and that the user has no control over it, even if they regularly manipulate object pointers to memory blocks inside that heap. The allocation of heap space for Python objects and other internal buffers is performed on demand by the Python memory manager through the Python/C API functions listed in this document.

To avoid memory corruption, extension writers should never try to operate on Python objects with the functions exported by the C library: malloc()calloc()realloc() and free(). This will result in mixed calls between the C allocator and the Python memory manager with fatal consequences, because they implement different algorithms and operate on different heaps. However, one may safely allocate and release memory blocks with the C library allocator for individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc(BUFSIZ); /* for I/O */

if (buf == NULL)
    return PyErr_NoMemory();
...Do some I/O operation involving buf...
res = PyBytes_FromString(buf);
free(buf); /* malloc'ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory manager is involved only in the allocation of the bytes object returned as a result.

In most situations, however, it is recommended to allocate memory from the Python heap specifically because the latter is under control of the Python memory manager. For example, this is required when the interpreter is extended with new object types written in C. Another reason for using the Python heap is the desire to inform the Python memory manager about the memory needs of the extension module. Even when the requested memory is used exclusively for internal, highly specific purposes, delegating all memory requests to the Python memory manager causes the interpreter to have a more accurate image of its memory footprint as a whole. Consequently, under certain circumstances, the Python memory manager may or may not trigger appropriate actions, like garbage collection, memory compaction or other preventive procedures. Note that by using the C library allocator as shown in the previous example, the allocated memory for the I/O buffer escapes completely the Python memory manager.

See also

 

The PYTHONMALLOC environment variable can be used to configure the memory allocators used by Python.

The PYTHONMALLOCSTATS environment variable can be used to print statistics of the pymalloc memory allocator every time a new pymalloc object arena is created, and on shutdown.

Allocator Domains

All allocating functions belong to one of three different “domains” (see also PyMemAllocatorDomain). These domains represent different allocation strategies and are optimized for different purposes. The specific details on how every domain allocates memory or what internal functions each domain calls is considered an implementation detail, but for debugging purposes a simplified table can be found at here. There is no hard requirement to use the memory returned by the allocation functions belonging to a given domain for only the purposes hinted by that domain (although this is the recommended practice). For example, one could use the memory returned by PyMem_RawMalloc() for allocating Python objects or the memory returned by PyObject_Malloc() for allocating memory for buffers.

The three allocation domains are:

  • Raw domain: intended for allocating memory for general-purpose memory buffers where the allocation must go to the system allocator or where the allocator can operate without the GIL. The memory is requested directly to the system.

  • “Mem” domain: intended for allocating memory for Python buffers and general-purpose memory buffers where the allocation must be performed with the GIL held. The memory is taken from the Python private heap.

  • Object domain: intended for allocating memory belonging to Python objects. The memory is taken from the Python private heap.

When freeing memory previously allocated by the allocating functions belonging to a given domain,the matching specific deallocating functions must be used. For example, PyMem_Free() must be used to free memory allocated using PyMem_Malloc().

 

 

 

 

 

 

 

posted @   papering  阅读(265)  评论(0编辑  收藏  举报
努力加载评论中...
点击右上角即可分享
微信分享提示