半导体

小结:

1、

半导体器件可以通过结构和材料上的设计达到控制电流传输的目的,并以此为基础构建各种处理不同信号的电路。这是半导体在当前电子技术中广泛应用的原因。

2、

由化学键结的观点来看,获得足够能量、进入导电带的电子也等于有足够能量可以打破电子与固体原子间的共价键,而变成自由电子,进而对电流传导做出贡献。

 

半导体和导体之间有个显著的不同是半导体的电流传导同时来自电子与空穴的贡献,而导体的费米能级则已经在导带内,因此电子不需要很大的能量即可找到空缺的量子态供其跳跃、造成电流传导。

 

https://zh.wikipedia.org/wiki/半导体

 

 

三种导电性不同的材料比较,金属价电带导电带之间没有距离,因此电子(红色实心圆圈)可以自由移动。绝缘体的能隙宽度最大,电子难以从价电带跃迁至导电带。半导体的能隙在两者之间,电子较容易跃迁至导电带中。

 

半导体(德语:Halbleiter, 英语:Semiconductor, 法语:Semi-conducteur)是一种电导率绝缘体导体之间的物质或材料。半导体在某个温度范围内,随温度升高而增加电荷载流子的浓度,使得电导率上升、电阻率下降;在绝对零度时,成为绝缘体。依有无加入掺杂剂,半导体可分为:本征半导体杂质半导体(n型半导体、p型半导体)。

电导率容易受控制的半导体,可作为信息处理的器件材料。从科技或是经济发展的角度来看,半导体非常重要。很多电子产品,如计算机移动电话、数字录音机的核心单元都是利用半导体的电导率变化来处理信息。常见的半导体材料有:第一代(另一种定义/说法:第一“类”)的,第二代(类)的砷化镓磷化铟,第三代(类)的氮化镓氧化锌氮化铝碳化硅等;而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。

材料的导电性是由导带中含有的电子数量决定。当电子从价带获得能量而跳跃至导电带时,电子就可以在带间任意移动而导电。一般常见的金属材料其导电带与价电带之间的能隙非常小,在室温下电子很容易获得能量而跳跃至导电带而导电,而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至导电带,所以无法导电。

一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。

半导体通过电子传导或空穴传导的方式传输电流。电子传导的方式与铜线电流的流动类似,即在电场作用下高度电离原子将多余的电子向着负离子化程度比较低的方向传递。空穴导电则是指在正离子化的材料中,原子核外由于电子缺失形成的“空穴”,在电场作用下,空穴被少数的电子补入而造成空穴移动所形成的电流(一般称为正电流)。

材料中载流子(carrier)的数量对半导体的导电特性极为重要。这可以通过在半导体中有选择的加入其他“杂质”(IIIAVA族元素)来控制。如果我们在纯硅中掺杂(doping)少许的砷或磷(最外层有5个电子),就会多出1个自由电子,这样就形成n型半导体;如果我们在纯硅中掺入少许的硼(最外层有3个电子),就反而少了1个电子,而形成一个空穴(hole),这样就形成p型半导体(少了1个带负电荷的原子,可视为多了1个正电荷)。

普通半导体如砷化镓碳化硅等材料中的电子和空穴通常可以用非相对论性的抛物线型色散关系来描述其能量-动能关系[1][2],而在最近研发的新型半导体中,包括由麻省理工学院唐爽崔瑟豪斯夫人提出的准狄拉克材料、半狄拉克材料等(唐-崔瑟豪斯理论[3][4][5], 电子和空穴可以具有不同的相对论效应。这些相对论性的新型半导体材料或可引领下一代计算机芯片能源装置的研发。

 

 

半导体和绝缘体之间的差异主要来自两者的能带宽度不同。绝缘体的能带比半导体宽,意即绝缘体价带中的载流子必须获得比在半导体中更高的能量才能跳过能带,进入导带中。室温下的半导体导电性有如绝缘体,只有极少数的载流子具有足够的能量进入导带。因此,对于一个在相同电场下的本征半导体和绝缘体会有类似的电特性,不过半导体的能带宽度小于绝缘体也意味着半导体的导电性更容易受到控制而改变。

纯质半导体的电气特性可以借由植入杂质的过程而永久改变,这个过程通常称为掺杂。依照掺杂所使用的杂质不同,掺杂后的半导体原子周围可能会多出一个电子或一个空穴,而让半导体材料的导电特性变得与原本不同。如果掺杂进入半导体的杂质浓度够高,半导体也可能会表现出如同金属导体般(类金属)的电性。在掺杂了不同极性杂质的半导体界面处会有一个内建电场(built-in electric field),内建电场和许多半导体器件的操作原理息息相关(例如太阳能电池电子与空穴对的搜集就是靠内建电场来作用),而掺杂后的半导体有许多电性也会有相对应的变化。

除了借由掺杂的过程永久改变电性外,半导体亦可因为施加于其上的电场改变而动态地变化。半导体材料也因为这样的特性,很适合用来作为电路器件,例如晶体管晶体管属于有源式的(有源)半导体器件(active semiconductor devices),当有源器件和被动式的(无源)半导体器件(passive semiconductor devices)如电阻器或是电容器组合起来时,可以用来设计各式各样的集成电路产品,例如微处理器

电子导带掉回价带时,减少的能量可能会以光的形式释放出来。这种过程是制造发光二极管以及半导体激光的基础,在商业应用上都有举足轻重的地位。而相反地,半导体也可以吸收光子,透过光电效应而激发出在价带电子,产生电信号。这即是光探测器的来源,在光纤通讯或是太阳能电池的领域是最重要的器件,也是相机中CMOS Image Sensor主要的运作原理。

半导体有可能是单一元素组成,例如。也可以是两种或是多种元素的化合物,常见的化合物半导体砷化镓或是磷化铝铟镓(aluminium gallium indium phosphide, AlGaInP)等。合金也是半导体材料的来源之一,如硅锗或是砷化镓铝(aluminium gallium arsenide, AlGaAs)等。

 

半导体的电导率

在常温下,半导体的电导率介于金属导体(~ S/m)和绝缘体(< S/m)之间,一般为 S/m。

 

 

 

 

 

 

 

半导体中的电子所具有的能量被限制在基态自由电子之间的几个能带里,在能带内部电子能量处于准连续状态,而能带之间则有带隙相隔开,电子不能处于带隙内。当电子在基态时,相当于此电子被束缚在原子核附近;而相反地,如果电子具备了自由电子所需要的能量,那么就能完全离开此材料。每个能带都有数个相对应的量子态,而这些量子态中,能量较低的都已经被电子所填满。这些已经被电子填满的量子态中,能量最高的就被称为价电带半导体绝缘体在正常情况下,几乎所有电子都在价电带或是其下的量子态里,因此没有自由电子可供导电。

半导体和绝缘体之间的差异在于两者之间能带间隙宽度不同,亦即电子欲从价带跳入导电带时所必须获得的最低能量不一样。通常能带间隙宽度小于3电子伏特(eV)者为半导体,以上为绝缘体

绝对零度时,固体材料中的所有电子都在价带中,而导电带为完全空置。当温度开始上升,高于绝对零度时,有些电子可能会获得能量而进入导电带中。导电带是所有能够让电子在获得外加电场的能量后,移动穿过晶体、形成电流的最低能带,所以导电带的位置就紧邻价电带之上,而导电带和价电带之间的差距即是能带间隙。通常对半导体而言,能带间隙的大小约为1电子伏特上下。在导电带中,和电流形成相关的电子通常称为自由电子。根据包利不相容原理,同一个量子态内不能有两个电子,所以绝对零度时,费米能级以下的能带包括价电带全部被填满。由于在填满的能带内,具有相反方向动量的电子数目相等,所以宏观上不能载流。在有限温度,由热激发产生的导电带电子和价电带空穴使得导电带和价电带都未被填满,因而在外电场下可以观测到宏观净电流。

 

费米-狄拉克分布。

在价电带内的电子获得能量后便可跃升到导电带,而这便会在价带内留下一个空缺,也就是所谓的空穴。导电带中的电子和价电带中的空穴都对电流传递有贡献,空穴本身不会移动,但是其它电子可以移动到这个空穴上面,等效于空穴本身往反方向移动。相对于带负电的电子,空穴的电性为正电。

由化学键结的观点来看,获得足够能量、进入导电带的电子也等于有足够能量可以打破电子与固体原子间的共价键,而变成自由电子,进而对电流传导做出贡献。

半导体和导体之间有个显著的不同是半导体的电流传导同时来自电子与空穴的贡献,而导体的费米能级则已经在导带内,因此电子不需要很大的能量即可找到空缺的量子态供其跳跃、造成电流传导。

固体材料内的电子能量分布遵循费米-狄拉克分布。在绝对零度时,材料内电子的最高能量即为费米能级,当温度高于绝对零度时,费米能级为所有能级中,被电子占据概率等于0.5的能级。半导体材料内电子能量分布为温度的函数也使其导电特性受到温度很大的影响,当温度很低时,可以跳到导电带的电子较少,因此导电性也会变得较差。

 

 

所谓晶体管-分类与特征 - 电源设计电子电路基础电源技术信息网站_罗姆电源设计R课堂 https://techclass.rohm.com.cn/knowledge/si/s-si/03-s-si/4778

 

 

 

 

 

 

 

 

 
 
 
posted @ 2016-10-31 20:06  papering  阅读(367)  评论(0编辑  收藏  举报