【8】多元正态总体样本的极大似然估计

【8】p-Normal Distribution's MLE

考虑\(p\)元正态总体\(X\sim N_p(\mu,\Sigma)\),设\(X_{(i)}=(x_{i1},\dots,x_{ip})',\)\((i=1,\dots,n)\)\(p\)元正态总体\(X\)的简单随机样本,则有观测数据库:

\[X= \left( \begin{array} {cccc} x_{11} & x_{12} & \dots & x_{1p}\\ x_{21} & x_{22} & \dots & x_{2p}\\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \dots & x_{np}\\ \end{array} \right) \]

是一个随机阵。

引理(1)

对于矩阵\(A_{m\times n}\),\(A_{n\times m}\)有:\(tr(AB)=tr(BA)\)

\[\begin{align} tr(AB)=&\sum_{i=1}^m(AB)_{ii}\\ =&\sum_{i=1}^m(\sum_{j=1}^na_{ij}b_{ji})\\ 同理:tr(BA)=&\sum_{i=1}^n(\sum_{j=1}^mb_{ij}a_{ji}) \end{align} \]

由于\(\Sigma\)的可交换性,因此:

\[tr(AB)=\sum_{i=1}^m(\sum_{j=1}^na_{ij}b_{ji})=\sum_{i=1}^n(\sum_{j=1}^mb_{ij}a_{ji})=tr(BA) \]

于是可以推广到多个矩阵相乘:

\[tr(\prod_{i=1}^nA_i)=tr(A_n\prod_{i=1}^{n-1}A_i) \]

似然函数\(L(\mu,\Sigma)\)

对于样本\(X_{(i)}=(x_{i1},\dots,x_{ip})',\)\((i=1,\dots,n)\),其联合密度函数为:

\[f(x_{(i)})=\frac1{(2\pi)^{p/2}|\Sigma|^{1/2}}exp\left\{-\frac12(x_{(i)}-\mu)'\Sigma^{-1}(x_{(i)}-\mu)\right\} \]

而由似然函数定义:

\[\begin{align} L(\mu,\Sigma)=&\prod_{i=1}^nf(x_{(i)})\\ =&\prod_{i=1}^n\frac1{(2\pi)^{p/2}|\Sigma|^{1/2}}exp\left\{-\frac12(x_{(i)}-\mu)'\Sigma^{-1}(x_{(i)}-\mu)\right\}\\ =&\frac1{(2\pi)^{np/2}|\Sigma|^{n/2}}exp\left\{-\frac12\sum_{i=1}^n(x_{(i)}-\mu)'\Sigma^{-1}(x_{(i)}-\mu)\right\} \end{align} \]

由于:

\[(x_{(i)}-\mu)'\Sigma^{-1}(x_{(i)}-\mu)=C_0(是一个数) \]

所以:

\[(x_{(i)}-\mu)'\Sigma^{-1}(x_{(i)}-\mu)=tr\{(x_{(i)}-\mu)'\Sigma^{-1}(x_{(i)}-\mu)\}=tr(C_0) \]

于是:

\[\begin{align} L(\mu,\Sigma) =&\frac1{(2\pi)^{np/2}|\Sigma|^{n/2}}exp\left\{-\frac12\sum_{i=1}^n(x_{(i)}-\mu)'\Sigma^{-1}(x_{(i)}-\mu)\right\}\\ =&\frac1{(2\pi)^{np/2}|\Sigma|^{n/2}}exp\left\{-\frac12\sum_{i=1}^ntr[(x_{(i)}-\mu)'\Sigma^{-1}(x_{(i)}-\mu)]\right\}\\ (由引理)=&\frac1{(2\pi)^{np/2}|\Sigma|^{n/2}}exp\left\{-\frac12\sum_{i=1}^ntr[\Sigma^{-1}(x_{(i)}-\mu)(x_{(i)}-\mu)']\right\}\\ =&\frac1{(2\pi)^{np/2}|\Sigma|^{n/2}}exp\left\{tr(-\frac12\Sigma^{-1}\sum_{i=1}^n(x_{(i)}-\mu)(x_{(i)}-\mu)')\right\}\\ \end{align} \]

其中:

\[\begin{align} &\sum_{i=1}^n(x_{(i)}-\mu)(x_{(i)}-\mu)'\\ =&\sum_{i=1}^n(x_{(i)}-\overline{X}+\overline{X}-\mu)(x_{(i)}-\overline{X}+\overline{X}-\mu)'\\ =&\sum_{i=1}^n(x_{(i)}-\overline{X})(x_{(i)}-\overline{X})'+n(\overline{X}-\mu)(\overline{X}-\mu)'\\ =&A+n(\overline{X}-\mu)(\overline{X}-\mu)' \end{align} \]

带回似然函数可得:

\[\begin{align} L(\mu,\Sigma)=&\frac1{(2\pi)^{np/2}|\Sigma|^{n/2}}etr\left\{-\frac12\Sigma^{-1}\sum_{i=1}^n(x_{(i)}-\mu)(x_{(i)}-\mu)'\right\}\\ =&\frac1{(2\pi)^{np/2}|\Sigma|^{n/2}}etr\left\{-\frac12\Sigma^{-1}(A+n(\overline{X}-\mu)(\overline{X}-\mu)')\right\}\\ (两边求对数)\ln{L(\mu,\Sigma)}=& -\frac{np}2\ln{(2\pi)}-\frac{n}2\ln{|\Sigma|}-\frac12tr\left[\Sigma^{-1}(A+n(\overline{X}-\mu)(\overline{X}-\mu)')\right]\\ =& -\frac{np}2\ln{(2\pi)}-\frac{n}2\ln{|\Sigma|}-\frac12tr\left[\Sigma^{-1}A+\Sigma^{-1}n(\overline{X}-\mu)(\overline{X}-\mu)'\right]\\ =& -\frac{np}2\ln{(2\pi)}-\frac{n}2\ln{|\Sigma|}-\frac12tr[\Sigma^{-1}A]-\frac12tr[\Sigma^{-1}n(\overline{X}-\mu)(\overline{X}-\mu)']\\ (仅当\mu=\overline{X}时取等号)\leq&-\frac{np}2\ln{(2\pi)}-\frac{n}2\ln{|\Sigma|}-\frac12tr[\Sigma^{-1}A]\\ \end{align} \]

求似然函数极大值:

方法一
  • (引理二)

\(B\)\(p\)阶正定矩阵,则:\(tr(B)-\ln{|B|}\geq p\).

\[\ln{|B|}=\sum_{i=1}^p\ln{\lambda_i}=\sum_{i=1}^p\ln{(1+\lambda_i-1)}\leq\sum_{i=1}^p(\lambda_i-1)=tr(B)-p \]

则有:

\[tr{\,(B)}-\ln{|B|}\ge p\tag{引理,证毕} \]

于是观察\(\ln{L(\mu,\Sigma)}\)得:

\[\begin{align} \ln{L(\mu,\Sigma)}=& -\frac{np}2\ln{(2\pi)}-\frac{n}2\ln{|\Sigma|}-\frac12tr[\Sigma^{-1}A]\\ =&-\frac{np}2\ln{(2\pi)}-\frac{n}2\left[\ln{|\Sigma|}+tr[\Sigma^{-1}\frac{A}n]\right]\\ =&-\frac{np}2\ln{(2\pi)}-\frac{n}2\left[tr[\Sigma^{-1}\frac{A}n]-\ln{|\Sigma^{-1}\frac An|}+\ln{\frac{A}{n}}\right]\\ \leq&-\frac{np}2\ln{(2\pi)}-\frac n2(p+\ln{|\frac An|}) \end{align} \]

以上不等式的等号当且仅当\(\Sigma^{-1}\frac{A}n=I_p\)时成立,于是\(\Sigma=\frac{A}n\),则有:

\[\ln{L(\overline{X},\frac1nA)}=\max_{\overline{X},\Sigma>0}\ln{L(\overline{X},\Sigma)}=-\frac{np}2(1+\ln(2\pi))-\frac n2\ln{|\frac{A}n|} \]

其中

\[\overline{X}=\frac1n\sum_{i=1}^nX_{(i)}\\ \Sigma=\frac1n\sum_{i=1}^n(x_{(i)}-\overline{X})(x_{(i)}-\overline{X})' \]

posted @ 2020-03-16 17:56  ExplodedVegetable  阅读(1555)  评论(1编辑  收藏  举报