变限积分求导公式证明及其推论
变限积分求导公式证明及其推论
1.变上限积分
- 若函数 \(f (x)\)在$[a, b] \(上连续 , 对任意\) x∈[a, b]$, 定义变上限定积分 :
\[Φ(x) = \int_a^xf (t) dt ,x∈[a, b]
\]
2.引理
- 若函数 \(f (x)\) 在 $[a, b] $上连续,则变上限定积分 \(Φ(x) = \int_a^xf (t) dt ,x∈[a, b]\) 在$ [a, b] $上可导 , 且 \(Φ' (x) = f (x)\).
证明:
任取\(x∈[a, b]\),改变量\(\triangle x\)满足\(x+\triangle x\in[a,b]\),对应的改变量\(\triangle\Phi=\Phi(x+\triangle x)-\Phi(x)\)满足:
\[\begin{align}
\triangle\Phi=&\Phi(x+\triangle x)-\Phi(x)\\
=&\int_a^{x+\triangle x}f(t)dt-\int_a^{x}f(t)dt\\
=&\int_x^{x+\triangle x}f(t)dt
\end{align}
\]
由积分中值定理:
\[\begin{align}
&\exist\xi\in[x,x+\triangle x]\sub[a,b]\\
s.t.&\to\int_x^{x+\triangle x}f(t)dt=f(\xi)\cdot\triangle x\\
\therefore f(\xi)&=\frac{\int_x^{x+\triangle x}f(t)dt}{\triangle x}
\end{align}
\]
因为\(f(x)\)在\([a,b]\)上连续,所以:
\[\lim_{\triangle x\to0}f(\xi)=f(x)
\]
即:
\[f(x)=\lim_{\triangle x\to0}\frac{\int_x^{x+\triangle x}f(t)dt}{\triangle x}=\frac{d}{dx}(\int_a^{x}f(t)dt)
\]
3.重要推论
若函数\(f(x)\)在\([a,b]\)上连续,\(\phi(x),\varphi(x)\)在\([a,b]\)上可微,则
\[\frac{d}{dx}(\int_{\varphi(x)}^{\phi(x)}f(t)dt)=f(\phi(x))\phi'(x)-f(\varphi(x))\varphi'(x)
\]
证明:
这里只给出积分上限为复合函数的情况下的证明,下限同理。
设\(F(x)\)是\(f(x)\)的一个原函数,设:
\[\begin{cases}
u=\phi(x)\\
v=\varphi(x)
\end{cases},x\in[a,b]
\]
则原式为:
\[\begin{align}
\frac{d}{dx}(\int_{a}^{\phi(x)}f(t)dt)=&
\frac{d}{dx}(\int_{a}^{u}f(t)dt)\\
(由链式求导法则)=&\frac{du}{dx}\cdot\frac{d}{du}(\int_{a}^{u}f(t)dt)\\
(由引理)=&\frac{du}{dx}\cdot f(u)\\
=&\frac{d}{dx}\phi(x)\cdot f(u)\\
=&f(\phi(x))\cdot\phi'(x)
\end{align}
\]
下限同理可证,于是可以得出:
\[\frac{d}{dx}(\int_{\varphi(x)}^{\phi(x)}f(t)dt)=f(\phi(x))\phi'(x)-f(\varphi(x))\varphi'(x)
\]