POJ 3415 (后缀自动机)
POJ 3415 Common Substrings
Problem : 给两个串S、T (len <= 10^5), 询问两个串有多少个长度大于等于k的子串(位置不同也算)。
Solution :最开始的想法是将S串和T串先后插入后缀自动机,统计出每个节点对应串的出现次数,不过这种做法被卡空间了。
第二种想法是只将S串插入后缀自动机,建立后缀树,统计出每个节点对应串的出现次数,在统计出每个节点的所有父亲节点的出现次数之和。之后将T串在后缀自动机上进行匹配,假设当前T串在p节点匹配成功,且匹配成功长度为len,那么对答案的贡献就是p节点所有长度超过k的父亲节点,再加上当前节点中长度超过k但不超过
tmp的串。
#include <iostream>
#include <string>
using namespace std;
const int N = 200008;
struct edge
{
int v, nt;
};
struct Suffix_Automanon
{
int nt[N][60], a[N], fail[N];
int tot, last, root;
int lt[N], sum;
int p, q, np, nq;
int cnt[N];
long long f[N];
edge eg[N];
int newnode(int len)
{
for (int i = 0; i < 60; ++i) nt[tot][i] = -1;
fail[tot] = -1; cnt[tot] = f[tot] = lt[tot] = 0; a[tot] = len;
return tot++;
}
void clear()
{
tot = sum = 0;
last = root = newnode(0);
}
void add(int u, int v)
{
eg[++sum] = (edge){v, lt[u]}; lt[u] = sum;
}
void insert(int ch)
{
p = last; np = last = newnode(a[p] + 1); cnt[np] = 1;
for (; ~p && nt[p][ch] == -1; p = fail[p]) nt[p][ch] = np;
if (p == -1) fail[np] = root;
else
{
q = nt[p][ch];
if (a[p] + 1 == a[q]) fail[np] = q;
else
{
nq = newnode(a[p] + 1);
for (int i = 0; i < 60; ++i) nt[nq][i] = nt[q][i];
fail[nq] = fail[q]; fail[q] = fail[np] = nq;
for (; ~p && nt[p][ch] == q; p = fail[p]) nt[p][ch] = nq;
}
}
}
void dfs(int u)
{
for (int i = lt[u]; i; i = eg[i].nt)
{
dfs(eg[i].v);
cnt[u] += cnt[eg[i].v];
}
}
void dfs(int u, int k)
{
for (int i = lt[u]; i; i = eg[i].nt)
{
if (u != root && k <= a[u])
{
f[eg[i].v] += f[u] + (a[u] - max(k, a[fail[u]] + 1) + 1) * cnt[u];
}
dfs(eg[i].v, k);
}
}
void build(int k)
{
for (int i = 1; i < tot; ++i) add(fail[i], i);
dfs(root);
dfs(root, k);
}
void solve(const string &s, int k)
{
int p = root, tmp = 0;
long long ans = 0;
for (int i = 0, len = s.length(); i < len; ++i)
{
int ch = s[i] - 'A';
if (~nt[p][ch]) p = nt[p][ch], tmp++;
else
{
for (; ~p && nt[p][ch] == -1; p = fail[p]);
if (p == -1) p = root, tmp = 0;
else
{
tmp = a[p] + 1;
p = nt[p][ch];
}
}
if (p != root)
{
ans += f[p];
if (tmp >= k && k <= a[p]) ans += (min(a[p], tmp) - max(k, a[fail[p]] + 1) + 1) * cnt[p];
}
}
cout << ans << endl;
}
}sam;
int main()
{
int n; string s, t;
while (cin >> n >> s >> t)
{
sam.clear();
for (int i = 0, len = s.length(); i < len; ++i)
sam.insert(s[i] - 'A');
sam.build(n);
sam.solve(t, n);
}
}