数位dp
1. Codeforces 55D Beautiful numbers
Problem : 询问一个区间内有多少个数,可以整除其每一位的数字。
**Solution : **记录一下前若干位数字的lcm和前缀和,由于1~9的lcm是2520,所以前缀和可以对2520取模。对于合法的lcm压缩一下状态,就可以存下来了。
#include <bits/stdc++.h>
using namespace std;
const int N = 20;
const int SUM = 2520;
int a[N];
int index[SUM];
long long dp[N][50][SUM];
int gcd(int x, int y)
{
return y ? gcd(y, x % y) : x;
}
int lcm(int x, int y)
{
return x * y / gcd(x, y);
}
long long dfs(int pos, int prelcm, int presum, int limit, int leed)
{
if (pos == 0)
{
if (presum % prelcm == 0 && !leed) return 1;
return 0;
}
if (!limit && !leed && ~dp[pos][index[prelcm]][presum]) return dp[pos][index[prelcm]][presum];
int u = limit ? a[pos] : 9;
long long ans = 0;
for (int i = 0; i <= u; ++i)
{
ans += dfs(pos - 1, (i == 0) ? prelcm : lcm(prelcm, i), (presum * 10 + i) % SUM,
limit && i == u, leed && i == 0 );
}
if (!limit && !leed) dp[pos][index[prelcm]][presum] = ans;
return ans;
}
long long solve(long long x)
{
int len = 0;
while (x)
{
a[++len] = x % 10;
x /= 10;
}
return dfs(len, 1, 0, 1, 1);
}
int main()
{
cin.sync_with_stdio(0);
int tot;
index[0] = tot = 1;
for (int i = 1; i < SUM; ++i)
{
if (SUM % i == 0)
{
index[i] = ++tot;
}
}
memset(dp, -1, sizeof(dp));
int T; cin >> T;
for (int i = 0; i < T; ++i)
{
long long l, r;
cin >> l >> r;
cout << solve(r) - solve(l - 1) << endl;
}
}
2. HDU 4352 XHXJ'S LIS
**Problem : ** 询问一个区间内有多少个数 ,最长严格上升序列长度为k。
**Solution : ** 用类似于nlogn求最长不下降序列的思路,记录下每一位长度的最小数字。由于数字大小为0~9,且具有单调性质,直接用1<<10来表示每个数字出现过。在形成下一个状态时,找到大于等于当前数字的以为并替换。需要考虑如果有前导0并且当且数字是0的话是不记录状态的。
#include <iostream>
#include <cstring>
using namespace std;
long long dp[20][2048][11];
int a[20];
int get(int state)
{
int len = 0;
while (state)
{
if (state % 2 == 1) len++;
state /= 2;
}
return len;
}
int next(int state, int num, int leed)
{
if (leed && num == 0) return state;
for (int i = num; i <= 9; ++i)
if (state & (1 << i))
return (state ^ (1 << i)) | (1 << num);
return state | (1 << num);
}
long long dfs(int pos, int k, int state = 0, int limit = 1, int leed = 1)
{
if (!limit && !leed && ~dp[pos][state][k]) return dp[pos][state][k];
if (pos == 0)
{
return get(state) == k;
}
int u = limit ? a[pos] : 9;
long long ans = 0;
for (int i = 0; i <= u; ++i)
{
ans += dfs(pos - 1, k, next(state, i, leed), limit && i == u, leed && i == 0);
}
if (!limit && !leed) dp[pos][state][k] = ans;
return ans;
}
long long solve(long long x, int k)
{
int len = 0;
while (x)
{
a[++len] = x % 10;
x /= 10;
}
return dfs(len, k);
}
int main()
{
memset(dp, -1, sizeof(dp));
cin.sync_with_stdio(0);
int T; cin >> T;
for (int cas = 1; cas <= T; ++cas)
{
long long l, r;
int k;
cin >> l >> r >> k;
cout << "Case #" << cas << ": " << solve(r, k) - solve(l - 1, k) << endl;
}
/*for (int i = 123; i <= 321; ++i)
{
cout << i << " " << solve(i, 2) - solve(i - 1, 2) << endl;
}*/
}
3. HDU 4507 吉哥系列故事――恨7不成妻
**Problem : **询问一个区间里满足以下性质的数字的平方和:没有一位是7, 数字和不是7的倍数, 这个数不是7的倍数
**Solution : **用三个状态是否出现过7,数字之和,数位之和就可以判断是否是合法的数字。询问要求的是平方和,根据平方和公式(10a+b)^2可以得到只需记录平方和,和以及数量就可以递推得到下一位的平方和。
#include <bits/stdc++.h>
using namespace std;
const int N = 20;
const int mo =1e9 + 7;
struct node
{
long long num;
long long sum;
long long squre;
node(long long num_ = 0, long long sum_ = 0, long long squre_ = 0):num(num_), sum(sum_), squre(squre_){}
};
node dp[N][2][7][7];
long long power[N];
int a[N];
void upd(long long &x, long long y)
{
x = (x + y) % mo;
}
node dfs(int pos, int y7, int digit, int presum, int limit)
{
if (pos == 0)
{
if (!y7 && digit && presum) return node(1, 0, 0); else return node(0, 0, 0);
}
if (!limit && ~dp[pos][y7][digit][presum].num) return dp[pos][y7][digit][presum];
int u = limit ? a[pos] : 9;
node ans;
for (int i = 0; i <= u; ++i)
{
node nxt = dfs(pos - 1, y7 || i == 7, (digit + i) % 7, (presum * 10 + i) % 7, limit && i == u);
upd(ans.num, nxt.num);
upd(ans.sum, (nxt.sum + power[pos - 1] * i % mo * nxt.num) % mo);
upd(ans.squre, power[pos - 1] * power[pos - 1] % mo * i * i % mo * nxt.num % mo);
upd(ans.squre, power[pos - 1] * 2 * i % mo * nxt.sum % mo);
upd(ans.squre, nxt.squre);
}
if (!limit) dp[pos][y7][digit][presum] = ans;
return ans;
}
long long solve(long long x)
{
int len = 0;
while (x)
{
a[++len] = x % 10;
x /= 10;
}
return dfs(len, 0, 0, 0, 1).squre;
}
int main()
{
power[0] = 1;
for (int i = 1; i < N; ++i) power[i] = power[i - 1] * 10 % mo;
cin.sync_with_stdio(0);
int T; cin >> T;
memset(dp, -1, sizeof(dp));
for (int cas = 0; cas < T; ++cas)
{
long long l, r; cin >> l >> r;
cout << ((solve(r) - solve(l - 1)) % mo + mo) % mo << endl;
}
return 0;
}
4. SPOJ BALNUM Balanced Numbers
**Problem: ** 询问一个区间内有多少个数字满足:奇数数字出现偶数次,偶数数字出现奇数次。
**Solution: ** 用一个三进制的数记录下每个数字出现的状态,0,1,2分别表示奇数次,偶数次和没出现过。
#include <bits/stdc++.h>
using namespace std;
const int N = 22;
const int M = 60000;
typedef unsigned long long ull;
ull dp[N][M];
int a[N];
int power[N];
int change(int status, int num)
{
int tot = status;
for (int i = 1; i <= num; i++) tot /= 3;
switch (tot % 3)
{
case 0:return status + power[num];break;
case 1:return status + power[num];break;
case 2:return status - power[num];break;
}
}
ull dfs(int pos, int status, int limit, int leed)
{
if (pos == 0)
{
//cout << pos << " " << status << endl;
int tot = status;
for (int i = 0; i <= 9; ++i)
{
switch (tot % 3)
{
case 0:break;
case 1:if (i % 2 == 1) return 0;break;
case 2:if (i % 2 == 0) return 0;break;
}
tot /= 3;
}
return 1;
}
if (!limit && !leed && ~dp[pos][status]) return dp[pos][status];
int u = limit ? a[pos] : 9;
ull ans = 0;
for (int i = 0; i <= u; ++i)
{
ans += dfs(pos - 1, (leed && i == 0) ? status : change(status,i), limit && i == u, leed && i == 0);
}
if (!limit && !leed) dp[pos][status] = ans;
return ans;
}
ull solve(ull x)
{
int len = 0;
while (x)
{
a[++len] = x % 10;
x /= 10;
}
return dfs(len, 0, 1, 1);
}
int main()
{
power[0] = 1;
for (int i = 1; i <= 9; ++i) power[i] = power[i - 1] * 3;
cin.sync_with_stdio(0);
int T; cin >> T;
memset(dp, -1, sizeof(dp));
for (int i = 1; i <= T; i++)
{
ull l, r;
cin >> l >> r;
cout << solve(r) - solve(l - 1) << endl;
}
return 0;
}
5. HDU 4734 F(x)
**Problem: **定义F(x) = An * 2^(n-1) + ... + A 2 * 2 + A 1 * 1.询问0~B内有多少个数满足f(x) <= f(A)。 10000组数据。
**Solution: **由于有多组数据,因此需要考虑记录下与输入无关的状态,来优化程序速度。倒着来存储状态,记录下当前数值距离0还差多少,从而与A无关。
#include <bits/stdc++.h>
using namespace std;
const int N = 12;
const int M = 10008;
int dp[N][M];
int a[N];
int dfs(int pos, int presum, int limit)
{
if (presum < 0) return 0;
if (pos == 0) return 1;
if (!limit && ~dp[pos][presum]) return dp[pos][presum];
int u = limit ? a[pos] : 9;
int ans = 0;
for (int i = 0; i <= u; ++i)
{
ans += dfs(pos - 1, presum - (1 << pos - 1) * i, limit && i == u);
}
if (!limit) dp[pos][presum] = ans;
return ans;
}
int solve(int A, int B)
{
int len = 0, sum = 0;
while (A)
{
a[++len] = A % 10;
A /= 10;
}
for (int i = 1; i <= len; ++i) sum = sum + a[i] * (1 << i - 1);
len = 0;
while (B)
{
a[++len] = B % 10;
B /= 10;
}
return dfs(len, sum, 1);
}
int main()
{
cin.sync_with_stdio(0);
int T; cin >> T;
memset(dp, -1 ,sizeof(dp));
for (int i = 1; i <= T; ++i)
{
int A, B; cin >> A >> B;
cout << "Case #" << i << ": " << solve(A, B) << endl;
}
return 0;
}