03 2022 档案
摘要:在具体介绍 TensorFlow 分布式的各种 Strategy 之前,我们首先需要看看分布式的基础:分布式环境。只有把基础打扎实了,才能在以后的分析工作之中最大程度的扫清障碍,事半功倍。本文会从 Client 开始,看看 Master 如何对计算图进行处理。
阅读全文
摘要:在具体介绍 TensorFlow 分布式的各种 Strategy 之前,我们首先需要看看分布式的基础:分布式环境。只有把基础打扎实了,才能在以后的分析工作之中最大程度的扫清障碍,事半功倍。会话机制是TensorFlow 分布式运行时的核心,我们接下来按照从 Client 到 worker 的流程,把 Session 机制从前到后走一遍。
阅读全文
摘要:在具体介绍 TensorFlow 分布式的各种 Strategy 之前,我们首先需要看看分布式的基础:分布式环境。只有把基础打扎实了,才能在以后的分析工作之中最大程度的扫清障碍,事半功倍。我们接下来介绍缓存机制。
阅读全文
摘要:在具体介绍 TensorFlow 分布式的各种 Strategy 之前,我们首先需要看看分布式的基础:分布式环境。只有把基础打扎实了,才能在以后的分析工作之中最大程度的扫清障碍,事半功倍。本篇介绍 Worker(一系列相关概念) 的静态架构。
阅读全文
摘要:在具体介绍 TensorFlow 分布式的各种 Strategy 之前,我们首先需要看看分布式的基础:分布式环境。只有把基础打扎实了,才能在以后的分析工作之中最大程度的扫清障碍,事半功倍。本文梳理下 Master 的静态逻辑。
阅读全文
摘要:在具体介绍 TensorFlow 分布式的各种 Strategy 之前,我们首先需要看看分布式的基础:分布式环境。只有把基础打扎实了,才能在以后的分析工作之中最大程度的扫清障碍,事半功倍。
阅读全文
摘要:读论文有一种原则是:本领域最经典的论文,近5年最热的论文,近1年最新的论文。按照这个原则,本文主要介绍一篇Tensorflow 经典论文 [Implementation of Control Flow in TensorFlow]。
阅读全文
摘要:本文主要介绍一篇 TensorFlow 经典论文[ TensorFlow : Large-Scale Machine Learning on Heterogeneous Distributed Systems](http://download. TensorFlow .org/paper/whitepaper2015.pdf)。大家如果读了下面论文就会发现 TensorFlow分布式的博大精深。
阅读全文
摘要:经过9篇文章之后,我们基本把 HugeCTR 的训练过程梳理了以下,现在我们有必要看看HugeCTR如何进行推理,这样可以让我们从整体上有一个更好的把握。而且我们之前都是分析分布式训练,此处恰好可以看看分布式推理。
阅读全文
摘要:在这个系列中,我们介绍了 HugeCTR,这是一个面向行业的推荐系统训练框架,针对具有模型并行嵌入和数据并行密集网络的大规模 CTR 模型进行了优化。本文介绍 LocalizedSlotSparseEmbeddingHash 的后向操作。
阅读全文
摘要:在这个系列中,我们介绍了 HugeCTR,这是一个面向行业的推荐系统训练框架,针对具有模型并行嵌入和数据并行密集网络的大规模 CTR 模型进行了优化。本文介绍 DistributedSlotSparseEmbeddingHash 的后向操作。
阅读全文