[源码解析] TensorFlow 分布式环境(4) --- WorkerCache
[源码解析] TensorFlow 分布式环境(4) --- WorkerCache
我们接下来介绍缓存机制。为什么要缓存?因为集群内部有众多 worker。在 Master 与 Worker 之间,Worker 和 Worker 之间都需要交互,所以有必要把 Worker 和其 Grpc 通道都缓存起来。可以说,在 TensorFlow 分布式环境下处处可见缓存的使用。
本系列其他文章是:
[翻译] TensorFlow 分布式之论文篇 "Implementation of Control Flow in TensorFlow"
[源码解析] TensorFlow 分布式环境(1) --- 总体架构
[源码解析] TensorFlow 分布式环境(2)---Master 静态逻辑
[源码解析] TensorFlow 分布式环境(3)--- Worker 静态逻辑
1. WorkerCache
WorkerCache 的作用就是获取 WorkerInterface 实例,WorkerInterface 实例可以访问远端 WorkerSerivice 服务。WorkerInterface 实例的典型就是 GrpcRemoteWorker。
1.1 如何使用
前面初始化 MasterEnv 时,WorkerCacheFactory 被配置到 master_env_.worker_cache_factory 之中。
master_env_.worker_cache_factory =
[this](const WorkerCacheFactoryOptions& options,
WorkerCacheInterface** worker_cache) {
return WorkerCacheFactory(options, worker_cache);
};
后续在 Master::CreateSession 之中,有如下删减版代码,从中可以知道如何从工厂类之中获取 worker_cache(WorkerCacheInterface实例),以及后续如何使用 worker_cache 进行操作。
void Master::CreateSession(const CreateSessionRequest* req,
CreateSessionResponse* resp, MyClosure done) {
SchedClosure([this, req, resp, done]() {
// 配置option
WorkerCacheFactoryOptions worker_cache_factory_options;
worker_cache_factory_options.protocol = &grpc_protocol;
worker_cache_factory_options.rpc_options = &req->config().rpc_options();
// 建立 worker_cache
// Create the worker cache from the computed server_def.
status = env_->worker_cache_factory(worker_cache_factory_options,
&worker_cache);
// 使用 worker_cache 来完成后续操作
status =
DeviceFinder::GetRemoteDevices(req->config().device_filters(), env_,
worker_cache, remote_devices.get());
});
}
1.2 配置
WorkerCacheFactoryOptions 等价于 ServerDef,它包含 ClusterDef,job_name,task_index 等信息。
// Options passed to the worker_cache_factory function.
struct WorkerCacheFactoryOptions {
const ClusterDef* cluster_def = nullptr;
const string* job_name = nullptr;
int task_index;
const string* protocol = nullptr;
const RPCOptions* rpc_options = nullptr;
WorkerCacheFactoryOptions() {}
// Construct from a ServerDef proto.
//
// Note: server_def must outlive WorkerCacheFactoryOptions!
WorkerCacheFactoryOptions(const ServerDef& server_def) {
if (server_def.has_cluster() && !server_def.job_name().empty()) {
cluster_def = &server_def.cluster();
job_name = &server_def.job_name();
task_index = server_def.task_index();
protocol = &server_def.protocol();
rpc_options = &server_def.default_session_config().rpc_options();
}
}
};
1.3 工厂类
WorkerCacheFactory 是一个函数,其作用如下:
- 使用 ParseChannelSpec 来得到 GrpcChannelSpec 实例,GrpcChannelSpec 等价于 ClusterSpec,其包含集群基本配置信息。
- 使用 NewGrpcChannelCache 拿到一个GrpcChannelCache channel_cache。这里使用到了 GetChannelCreationFunction。
- 使用 NewGrpcWorkerCacheWithLocalWorker(channel_cache) 得到 worker_cache。
Status GrpcServer::WorkerCacheFactory(const WorkerCacheFactoryOptions& options,
WorkerCacheInterface** worker_cache) {
// 得到 GrpcChannelSpec
GrpcChannelSpec channel_spec;
TF_RETURN_IF_ERROR(ParseChannelSpec(options, &channel_spec));
// 得到 GrpcChannelCache
std::shared_ptr<GrpcChannelCache> channel_cache(NewGrpcChannelCache(
channel_spec, GetChannelCreationFunction(), *options.rpc_options));
string name_prefix = strings::StrCat("/job:", *options.job_name, "/replica:0",
"/task:", options.task_index);
const string host_port = channel_cache->TranslateTask(name_prefix);
int requested_port;
auto colon_index = host_port.find_last_of(':');
if (!strings::safe_strto32(host_port.substr(colon_index + 1),
&requested_port)) {
return errors::Internal("Could not parse port for local server from \"",
host_port, "\".");
}
if (requested_port != bound_port_) {
return errors::InvalidArgument("Requested port ", requested_port,
" differs from expected port ", bound_port_);
}
// 得到 Worker Cache
*worker_cache = NewGrpcWorkerCacheWithLocalWorker(
channel_cache, grpc_worker_env(), worker_impl(), name_prefix);
return Status::OK();
}
1.3.1 ParseChannelSpec
ParseChannelSpec 被用来得到 GrpcChannelSpec 实例,GrpcChannelSpec 等价于 ClusterSpec,其包含集群基本配置信息。
Status GrpcServer::ParseChannelSpec(const WorkerCacheFactoryOptions& options,
GrpcChannelSpec* channel_spec) {
for (const auto& job : options.cluster_def->job()) {
std::map<int, string> host_ports;
for (const auto& task : job.tasks()) {
string& host_port = host_ports[task.first];
if (!host_port.empty()) {
return errors::InvalidArgument("JobDef for job \"", job.name(),
"\" specified two addresses for task \"",
task.first, "\": ", host_port, " and ",
task.second);
}
if (job.name() == *options.job_name && task.first == options.task_index) {
host_port = strings::StrCat(host_name_, ":", bound_port_);
} else {
host_port = task.second;
}
}
TF_RETURN_IF_ERROR(channel_spec->AddHostPortsJob(job.name(), host_ports));
}
return Status::OK();
}
1.3.2 NewGrpcChannelCache
NewGrpcChannelCache 用于创建 GrpcChannelCache 实例,可以看到,每个 Job 对应了一个 SparseGrpcChannelCache。如果只有一个 SparseGrpcChannelCache,则直接返回,否则把这些 SparseGrpcChannelCache 组合在一起构建一个 MultiGrpcChannelCache 返回。其中传入的channel_func 是 GetChannelCreationFunction。我们后续会介绍。
GrpcChannelCache* NewGrpcChannelCache(const GrpcChannelSpec& spec,
ChannelCreationFunction channel_func,
const RPCOptions& options) {
const int num_jobs = spec.host_ports_jobs().size();
if (!num_jobs) {
return nullptr;
}
std::vector<GrpcChannelCache*> caches;
caches.reserve(num_jobs);
for (auto& job : spec.host_ports_jobs()) {
caches.push_back(
new SparseGrpcChannelCache(job.job_id, job.host_ports, channel_func,
options.num_channels_per_target()));
}
return caches.size() == 1 ? caches[0]
: new MultiGrpcChannelCache(
caches, options.num_channels_per_target());
}
1.3.3 NewGrpcWorkerCacheWithLocalWorker
NewGrpcWorkerCacheWithLocalWorker 方法创建 GrpcWorkerCache 实例。
WorkerCacheInterface* NewGrpcWorkerCacheWithLocalWorker(
std::shared_ptr<GrpcChannelCache> cc, GrpcWorkerEnv* worker_env,
WorkerInterface* local_worker, const string& local_target) {
return new GrpcWorkerCache(cc, local_worker, local_target, worker_env);
}
local_worker 参数是通过 worker_impl() 得到并且传入的,其生成是在 GrpcServer::Init 之中,就是本地的 GrpcWorker。
GrpcWorker* worker_impl() const { return worker_impl_.get(); }
std::unique_ptr<GrpcWorker> NewGrpcWorker(WorkerEnv* env,
const ConfigProto& config) {
return std::unique_ptr<GrpcWorker>(new GrpcWorker(env, config));
}
Status GrpcServer::Init(const GrpcServerOptions& opts) {
// 省略
worker_impl_ = opts.worker_func ? opts.worker_func(&worker_env_, config)
: NewGrpcWorker(&worker_env_, config);
// 省略
}
我们梳理一下工厂类目前流程,可以看到,最开始输入是 WorkerCacheFactoryOptions,然后一步一步的通过各个函数的处理,最后生成了 GrpcWorkerCache。
图 1 工厂类流程
1.4 WorkerCacheInterface
1.4.1 接口
WorkerCacheInterface 是接口类,上面图之中 GrpcWorkerCache 就是这个接口的派生类。
class WorkerCacheInterface {
public:
virtual ~WorkerCacheInterface() {}
// Updates *workers with strings naming the remote worker tasks to
// which open channels have been established.
virtual void ListWorkers(std::vector<string>* workers) const = 0;
virtual void ListWorkersInJob(const string& job_name,
std::vector<string>* workers) const = 0;
// If "target" names a remote task for which an RPC channel exists
// or can be constructed, returns a pointer to a WorkerInterface object
// wrapping that channel. The returned value must be destroyed by
// calling `this->ReleaseWorker(target, ret)`
virtual WorkerInterface* GetOrCreateWorker(const string& target) = 0;
// Release a worker previously returned by this->GetOrCreateWorker(target).
//
// TODO(jeff,sanjay): Consider moving target into WorkerInterface.
// TODO(jeff,sanjay): Unify all worker-cache impls and factor out a
// per-rpc-subsystem WorkerInterface creator.
virtual void ReleaseWorker(const string& target, WorkerInterface* worker) {
// Subclasses may override to reuse worker objects.
delete worker;
}
// Set *locality with the DeviceLocality of the specified remote device
// within its local environment. Returns true if *locality
// was set, using only locally cached data. Returns false
// if status data for that device was not available. Never blocks.
virtual bool GetDeviceLocalityNonBlocking(const string& device,
DeviceLocality* locality) = 0;
// Set *locality with the DeviceLocality of the specified remote device
// within its local environment. Callback gets Status::OK if *locality
// was set.
virtual void GetDeviceLocalityAsync(const string& device,
DeviceLocality* locality,
StatusCallback done) = 0;
// TODO(b/189159585): Define a general client cache maker function to
// construct client cache of different types sharing the same underling RPC
// channels, to replace the eager and coordination cache function.
// Build and return a EagerClientCache object wrapping that channel.
virtual Status GetEagerClientCache(
std::unique_ptr<eager::EagerClientCache>* eager_client_cache) = 0;
// Build and return a CoordinationClientCache object wrapping that channel.
virtual Status GetCoordinationClientCache(
std::unique_ptr<CoordinationClientCache>* coordination_client_cache) = 0;
// Start/stop logging activity.
virtual void SetLogging(bool active) {}
// Discard any saved log data.
virtual void ClearLogs() {}
// Return logs for the identified step in *ss. Any returned data will no
// longer be stored.
virtual bool RetrieveLogs(int64_t step_id, StepStats* ss) { return false; }
};
WorkerCachePartial 又继承了 WorkerCacheInterface。
// Implements the part of the interface that caches and returns remote
// device status attributes.
class WorkerCachePartial : public WorkerCacheInterface {
public:
bool GetDeviceLocalityNonBlocking(const string& device,
DeviceLocality* locality) override;
void GetDeviceLocalityAsync(const string& device, DeviceLocality* locality,
StatusCallback) override;
~WorkerCachePartial() override {}
// Clear all entries from the DeviceStatus cache.
void FlushStatusCache();
private:
mutex mu_;
// Initiate a GetStatusAsync to the remote task named by "task", and
// update the cache with all the DeviceAttributes reported.
Status RefreshDeviceStatus(const string& device_name);
typedef std::unordered_map<string, DeviceAttributes> StatusMap;
StatusMap device_status_cache_ TF_GUARDED_BY(mu_);
};
1.4.2 GrpcWorkerCache
GrpcWorkerCache 则继承了 WorkerCachePartial。
class GrpcWorkerCache : public WorkerCachePartial {
public:
explicit GrpcWorkerCache(std::shared_ptr<GrpcChannelCache> channel_cache,
WorkerInterface* local_worker,
const string& local_target,
GrpcWorkerEnv* worker_env)
: local_target_(local_target),
local_worker_(local_worker),
channel_cache_(channel_cache),
worker_env_(worker_env),
next_round_robin_assignment_(0) {}
const string local_target_;
WorkerInterface* const local_worker_; // Not owned.
std::shared_ptr<GrpcChannelCache> channel_cache_;
WorkerCacheLogger logger_;
GrpcWorkerEnv* worker_env_; // Not owned
mutex assignment_mu_;
std::unordered_map<std::string, size_t> target_assignments_
TF_GUARDED_BY(assignment_mu_);
size_t next_round_robin_assignment_ TF_GUARDED_BY(assignment_mu_);
};
其主要功能是使用 ListWorkers 罗列出集群内所有 worker 的名字。
void ListWorkers(std::vector<string>* workers) const override {
channel_cache_->ListWorkers(workers);
}
void ListWorkersInJob(const string& job_name,
std::vector<string>* workers) const override {
channel_cache_->ListWorkersInJob(job_name, workers);
}
GetOrCreateWorker 会根据 Worker 的 RPC 通道建立 worker,如果是本地,则直接返回 local_worker_,就是我们前面设置的本地 GrpcWorker。
WorkerInterface* GetOrCreateWorker(const string& target) override {
if (target == local_target_) {
return local_worker_;
} else {
SharedGrpcChannelPtr channel = channel_cache_->FindWorkerChannel(target);
if (!channel) {
return nullptr;
}
size_t index = AssignWorkerToThread(target);
return NewGrpcRemoteWorker(
channel, worker_env_->GetCompletionQueue(index),
worker_env_->GetThreadPool(), &logger_, target);
}
}
2. RPC 通道
Worker 运行在 RPC 通道之上,所以我们接下来看看如何建立这个 RPC 通道。因为 Worker 有缓存,同样的,RPC 通道也有缓存。GrpcChannelCache 就是这个缓存,其被用来获取/创建集群之中远端 Worker 的 RPC 通道。
2.1 GrpcChannelCache 接口
GrpcChannelCache 是接口类,定义了一系列接口,比如:
- ListWorkers 可以返回集群之中的 Worker 名称。
- TranslateTask :把 Worker 名字 转换为地址信息,格式是 host:port。
- FindWorkerChannel :从缓存中查找 grpc::Channel 实例,如果缓存之中没有,就依据地址信息动态生成一个实例,再将其放入缓存。
class GrpcChannelCache {
public:
virtual ~GrpcChannelCache() {}
// Populates *workers with names of all workers which this object
// was created to handle. Worker names are in the format
// /job:<job identifier>/task:<task id>
// e.g. /job:mnist/task:2
virtual void ListWorkers(std::vector<string>* workers) = 0;
virtual void ListWorkersInJob(const string& job_name,
std::vector<string>* workers) = 0;
// If found, returns a gRPC channel that is connected to the remote
// worker named by 'target'. 'target' is of the following
// format: /job:<job identifier>/task:<task id>
// E.g., /job:mnist/task:2
virtual SharedGrpcChannelPtr FindWorkerChannel(const string& target) = 0;
// Translates a string in the form `/job:X/task:Z` into a host_port.
virtual string TranslateTask(const string& task) = 0;
};
2.2 缓存机制
CachingGrpcChannelCache 是缓存类,可以避免每次创建 grpc::Channel 的开销。其定义如下,具体就是派生了 GrpcChannelCache 的 GenericCachingChannelCache。
// GrpcChannelCache that caches results to FindWorkerChannel() calls.
using CachingGrpcChannelCache = GenericCachingChannelCache<GrpcChannelCache>;
GenericCachingChannelCache,用于缓存FindWorkerChannel()调用的结果,首先从缓存中查找 grpc::Channel 实例,如果缓存之中没有,就依据地址信息调用 FindChannelOnce 动态生成一个实例,再将其放入缓存。
GenericCachingChannelCache 允许使用多个通道与同一目标通信以提高吞吐量。当同一目标存在多个通道时,每次调用FindWorkerChannel时,都会以 round robin 循环方式选择这些通道。
注意,因为有如下定义,所以 absl::flat_hash_map<string, ChannelState> channels_ 就是 ::grpc::Channel 缓存 集合。
typedef std::shared_ptr<::grpc::Channel> SharedGrpcChannelPtr;
具体代码是:
template <typename ChannelCacheT>
class GenericCachingChannelCache : public ChannelCacheT {
public:
explicit GenericCachingChannelCache(int num_channels_per_target)
: num_channels_per_target_(
num_channels_per_target > 0 ? num_channels_per_target : 1) {}
~GenericCachingChannelCache() override {}
SharedGrpcChannelPtr FindWorkerChannel(const string& target) override {
{
mutex_lock l(mu_);
auto iter = channels_.find(target);
if (iter != channels_.end()) {
return GetNextChannelPtrAndUpdateState(iter->second);
}
}
ChannelState new_chan_state;
for (int indx = 0; indx < num_channels_per_target_; indx++) {
auto ch = FindChannelOnce(target);
if (!ch) return nullptr;
new_chan_state.channels.push_back(ch);
}
new_chan_state.last_used = num_channels_per_target_ - 1;
{
mutex_lock l(mu_);
typename absl::flat_hash_map<string, ChannelState>::iterator iter;
bool was_inserted;
std::tie(iter, was_inserted) = channels_.insert({target, new_chan_state});
return GetNextChannelPtrAndUpdateState(iter->second);
}
}
protected:
// Find the ClientChannel for "target". Only called when no channel was
// found in the channels_ cache for "target". A non nullptr result will be
// cached in channels_.
virtual SharedGrpcChannelPtr FindChannelOnce(const string& target) = 0;
private:
struct ChannelState {
std::vector<SharedGrpcChannelPtr> channels;
int last_used;
};
// Should be called with mu_ held.
SharedGrpcChannelPtr GetNextChannelPtrAndUpdateState(
ChannelState& chan_state) {
// Following statement is marked as Crash OK as this is an invariant of
// code flow in this class.
CHECK_EQ(chan_state.channels.size(), num_channels_per_target_); // Crash OK
chan_state.last_used =
(chan_state.last_used + 1) % num_channels_per_target_;
return chan_state.channels[chan_state.last_used];
}
const int num_channels_per_target_;
// TODO(zhifengc): Eviction when the map becomes too big.
mutex mu_;
absl::flat_hash_map<string, ChannelState> channels_ TF_GUARDED_BY(mu_);
};
2.3 业务派生类
从 CachingGrpcChannelCache 又派生出了两个类,具体如下:
2.3.1 叶子节点
SparseGrpcChannelCache 是叶子结点,集群之中每个 Job 对应了一个 SparseGrpcChannelCache,SparseGrpcChannelCache 内部的 grpc::Channel 集合就是 Job 的 Task 对应的 grpc::Channel 集合,每个 Task 对应一个 grpc::Channel 。
SparseGrpcChannelCache 主要变量如下:
- const string job_id_ :本类对应了哪一个 Job。
- const std::map<int, string> host_ports_ :本 Job 对应 Task 的 host:port 列表。
- const ChannelCreationFunction channel_func_ :生成 grpc:Channel 的方法。
SparseGrpcChannelCache 主要功能如下:
- ListWorkers :该方法返回本 Job 对应的 Task 名称列表。
- TranslateTask:依据某个 Task 名字来得到其地址信息(格式为host:port ),例如, /job:ps/replica:1/task:1 的地址可能就是 ps1:1111;
- FindChannelOnce :依据某个 Task 名字来创建对应的 grpc::Channel。具体是先通过 TranslateTask 获取到 worker 对应的 task id,然后得到地址信息,最后用地址信息来构建 grpc::Channel。
class SparseGrpcChannelCache : public CachingGrpcChannelCache {
public:
SparseGrpcChannelCache(const string& job_id,
const std::map<int, string>& host_ports,
ChannelCreationFunction channel_func,
int num_channels_per_target)
: CachingGrpcChannelCache(num_channels_per_target),
job_id_(job_id),
host_ports_(host_ports),
channel_func_(std::move(channel_func)) {
}
~SparseGrpcChannelCache() override {}
void ListWorkers(std::vector<string>* workers) override {
workers->reserve(workers->size() + host_ports_.size());
for (const auto& id_host_port : host_ports_) {
workers->emplace_back(MakeAddress(job_id_, id_host_port.first));
}
}
void ListWorkersInJob(const string& job_name,
std::vector<string>* workers) override {
if (job_name == job_id_) {
ListWorkers(workers);
}
}
string TranslateTask(const string& target) override {
DeviceNameUtils::ParsedName parsed;
if (!DeviceNameUtils::ParseFullName(target, &parsed)) {
return "";
}
if (!parsed.has_job || parsed.job != job_id_) {
return "";
}
if (!parsed.has_replica || parsed.replica != 0) {
return "";
}
int32_t task = parsed.has_task ? parsed.task : -1;
auto iter = host_ports_.find(task);
if (iter == host_ports_.end()) {
return "";
}
return iter->second;
}
protected:
SharedGrpcChannelPtr FindChannelOnce(const string& target) override {
const string host_port = TranslateTask(target);
if (host_port.empty()) {
if (host_port.empty()) {
return nullptr;
}
auto chan_ptr = channel_func_(host_port);
return chan_ptr;
}
private:
const string job_id_;
const std::map<int, string> host_ports_;
const ChannelCreationFunction channel_func_;
TF_DISALLOW_COPY_AND_ASSIGN(SparseGrpcChannelCache);
};
2.3.2 非叶子结点
为了提高 SparseGrpcChannelCache 查找过程以及对集群所有 Worker 节点 的组合管理,TF 把 集群内的 SparseGrpcChannelCache 组合起来,构建了 MultiGrpcChannelCache。MultiGrpcChannelCache 会把访问过的 SparseGrpcChannelCache 缓存起来。
// A ChannelCache that is the union of multiple ChannelCaches.
// Takes ownership of the caches passed to the constructor.
class MultiGrpcChannelCache : public CachingGrpcChannelCache {
public:
explicit MultiGrpcChannelCache(const std::vector<GrpcChannelCache*>& caches,
int num_channels_per_target)
: CachingGrpcChannelCache(num_channels_per_target), caches_(caches) {}
~MultiGrpcChannelCache() override {
for (GrpcChannelCache* cache : caches_) {
delete cache;
}
}
void ListWorkers(std::vector<string>* workers) override {
for (GrpcChannelCache* cache : caches_) {
cache->ListWorkers(workers);
}
}
void ListWorkersInJob(const string& job_name,
std::vector<string>* workers) override {
for (GrpcChannelCache* cache : caches_) {
cache->ListWorkersInJob(job_name, workers);
}
}
string TranslateTask(const string& target) override {
mutex_lock l(mu_); // could use reader lock
GrpcChannelCache* cache = gtl::FindPtrOrNull(target_caches_, target);
if (cache == nullptr) {
for (GrpcChannelCache* c : caches_) {
string r = c->TranslateTask(target);
if (!r.empty()) {
target_caches_.insert({target, c});
cache = c;
break;
}
}
}
return cache->TranslateTask(target);
}
protected:
SharedGrpcChannelPtr FindChannelOnce(const string& target) override {
for (GrpcChannelCache* cache : caches_) {
SharedGrpcChannelPtr ch(cache->FindWorkerChannel(target));
if (ch) {
mutex_lock l(mu_);
target_caches_.insert({target, cache});
return ch;
}
}
return nullptr;
}
private:
// List of channels used by this MultiGrpcChannelCache.
const std::vector<GrpcChannelCache*> caches_;
mutex mu_;
// Cache of channels keyed by the target they are handling.
// The same GrpcChannelCache can appear multiple times in the cache.
std::unordered_map<string, GrpcChannelCache*> target_caches_
TF_GUARDED_BY(mu_);
};
目前结构如下:
图 2 缓存逻辑关系
2.4 生成 GrpcChannelCache
前面在生成 GrpcChannelCache 时候,传入了 GetChannelCreationFunction,当时没有介绍,我们现在梳理一下。
// 得到 GrpcChannelCache
std::shared_ptr<GrpcChannelCache> channel_cache(NewGrpcChannelCache(
channel_spec, GetChannelCreationFunction(), *options.rpc_options));
2.4.1 目标&使用
我们首先看看如何使用或者说目标,就是通过 target(host:port类型的字符串)来生成一个 SharedGrpcChannelPtr,我们知道,SharedGrpcChannelPtr 就是 grpc::Channel。
SharedGrpcChannelPtr FindChannelOnce(const string& target) override {
const string host_port = TranslateTask(target);
if (host_port.empty()) {
if (host_port.empty()) {
return nullptr;
}
auto chan_ptr = channel_func_(host_port);
VLOG(5) << "Channel created for: job: " << job_id_
<< " host_port: " << host_port << " target : " << target
<< " Ptr: " << chan_ptr.get();
return chan_ptr;
}
2.4.2 NewHostPortGrpcChannel
首先要介绍 NewHostPortGrpcChannel,NewHostPortGrpcChannel 是 TF 现存的 API。其主要作用是调用 ::grpc::CreateCustomChannel(gRPC API)得到一个 grpc::Channel,配置到 SharedGrpcChannelPtr* channel_pointer 之上,然后返回 channel_pointer(也就是 grpc::Channel)。这个方法的返回结果是我们满意的,但是调用方法不对,需要封装或转换一下。
Status NewHostPortGrpcChannel(const string& target,
const RPCOptions* rpc_options,
SharedGrpcChannelPtr* channel_pointer) {
// Minimally ensure that the target is valid
TF_RETURN_IF_ERROR(ValidateHostPortPair(target));
::grpc::ChannelArguments args = GetChannelArguments(rpc_options);
*channel_pointer = ::grpc::CreateCustomChannel(
"dns:///" + target, ::grpc::InsecureChannelCredentials(), args);
return Status::OK();
}
2.4.3 ConvertToChannelCreationFunction
ConvertToChannelCreationFunction 方法是用来把传入的 new_channel_func_ptr 方法转换一下,把 new_channel_func_ptr 变成一个只需要传入 const string& target 就可以生成 SharedGrpcChannelPtr 的方法。
ChannelCreationFunction ConvertToChannelCreationFunction(
const std::function<Status(string, const RPCOptions*,
SharedGrpcChannelPtr*)>& new_channel_func_ptr) {
return [new_channel_func_ptr](const string& target) -> SharedGrpcChannelPtr {
SharedGrpcChannelPtr channel_ptr;
if (new_channel_func_ptr(target, /*rpc_options=*/nullptr, &channel_ptr)
.ok()) {
return channel_ptr;
} else {
return nullptr;
}
};
}
2.4.4 GetChannelCreationFunction
GetChannelCreationFunction 就是使用 NewHostPortGrpcChannel 作为传入参数,得到一个 ConvertToChannelCreationFunction 的方法,因为这个方法才是可以被 WorkerCache工厂类利用的方法。
ChannelCreationFunction GrpcServer::GetChannelCreationFunction() const {
// We can do this because SparseGrpcChannelCache is robust to nullptr being
// returned by the channel creation function
return ConvertToChannelCreationFunction(NewHostPortGrpcChannel);
}
2.4.5 使用分析
回到我们的调用。channel_func_ 就是 GetChannelCreationFunction,于是直接调用就可以得到 grpc::Channel。
SharedGrpcChannelPtr FindChannelOnce(const string& target) override {
const string host_port = TranslateTask(target);
auto chan_ptr = channel_func_(host_port);
}
至此,我们拓展之前的逻辑如下,中间增加了一个步骤,通过传入 target 就可以得到 grpc::Channel:
图 3 如何转换
3. Cache 在系统中的位置
我们虽然总结了 Cache 如何初始化,如何使用,但是我们迷失了 Cache 在系统之中的位置,现在我们看看究竟在系统之中,Cache 处于什么位置。GrpcWorkerCache 内部的 GrpcChannelCache 指向了系统内部的 gRPC Channel Cache,用来获取缓存的 gRPC 通道。local_worker 存储了本地 Worker。
图 4 Cache 的位置
当调用 GrpcWorkerCache 的 GetOrCreateWorker 时候,如果 target 是本地,就直接返回 local_worker(就是我们前面设置的本地 GrpcWorker),否则根据 Worker 的 RPC 通道来生成一个远端 GrpcRemoteWorker。
图 5 生成 worker
在 Master,Worker,MasterSesision,WorkerSession 之中,处处可见 WorkerCacheInterface(也就是GrpcWorkerCache)的身影,很多类都有一个指向 WorkerCacheInterface 的成员变量,使用相当广泛。
4. 查找设备集
为了创建 WorkerSession,MasterSession 需要知道远端所有 Worker 之上的设备集合,所以 Master 会在创建 MasterSession 之前遍历所有 Worker,获取其上的设备信息,因为其利用了 GrpcWorkerCache 的功能,所以我们在这里一起讲解。基本逻辑如下:
- 根据 GrpcWorkerCache::ListWorkers 获取集群中所有 Worker 的名字。
- 依据 worker_name 调用 GetOrCreateWorker 在 worker_cache 内部查找 WorkerInterface 对象,如果有就获取,没有就构建。
- 然后构建 GetStatusRequest,发送给找到的 Worker,具体通过 GetStatusAsync 完成。
- Worker 返回 GetStatusResponse 之后,将调用回调函数 cb (WhenFound方法)之中的函数对象来获取 Worke 的设备信息。这里需要对获取到的设备信息进行处理,添加 worker_name。
图 6 获取设备
4.1 DeviceFinder
4.1.1 定义
DeviceFinder 是一个函数对象,实现了查找远端worker设备的算法,我们先给出成员变量如下:
class DeviceFinder {
~DeviceFinder() {
for (Device* dev : found_) delete dev;
}
typedef DeviceFinder ME;
const MasterEnv* env_;
WorkerCacheInterface* worker_cache_;
std::vector<DeviceNameUtils::ParsedName> filters_;
mutex mu_;
int num_pending_ TF_GUARDED_BY(mu_);
condition_variable pending_zero_;
std::vector<Device*> found_ TF_GUARDED_BY(mu_);
// List of targets to be contacted by this DeviceFinder. The
// respective `bool` in `seen_targets_` indicates whether we have
// heard from this target or not.
std::vector<string> targets_;
std::vector<bool> seen_targets_ TF_GUARDED_BY(mu_);
Status status_;
TF_DISALLOW_COPY_AND_ASSIGN(DeviceFinder);
};
4.1.2 初始化
主要逻辑是:根据 GrpcWorkerCache::ListWorkers 获取集群中所有的 Worker 的名字列表。
explicit DeviceFinder(
const protobuf::RepeatedPtrField<string>& device_filters, MasterEnv* env,
WorkerCacheInterface* worker_cache)
: env_(env), worker_cache_(worker_cache) {
CHECK(worker_cache) << "Worker cache was null!";
auto process_filter = [this](const string& filter) {
DeviceNameUtils::ParsedName parsed;
if (DeviceNameUtils::ParseFullName(filter, &parsed)) {
filters_.push_back(parsed);
} else {
LOG(FATAL) << "Skipping invalid filter: " << filter;
}
};
for (const string& filter : device_filters) {
process_filter(filter);
}
// Enumerates all known workers' target. A target name is a
// prefix of a device name. E.g., /job:mnist/replica:0/task:10.
if (filters_.empty()) {
// If no filters were specified, we list all known workers in
// `worker_cache`.
std::vector<string> workers;
worker_cache->ListWorkers(&workers);
std::swap(workers, targets_);
} else {
// When applying filters, we must include the local worker, even if it
// does not match any of the filters.
CHECK_GT(env_->local_devices.size(), 0) << "No local devices provided.";
const string& local_device_name = env_->local_devices[0]->name();
DeviceNameUtils::ParsedName local_parsed_name;
CHECK(DeviceNameUtils::ParseFullName(local_device_name,
&local_parsed_name));
bool all_filters_have_job = true;
std::unordered_set<string> filter_job_names({local_parsed_name.job});
for (const DeviceNameUtils::ParsedName& filter : filters_) {
all_filters_have_job = all_filters_have_job && filter.has_job;
if (filter.has_job) {
filter_job_names.insert(filter.job);
}
}
std::vector<string> workers;
if (all_filters_have_job) {
// If all of the device filters have a job specified, then we only need
// to list the workers in the jobs named in the filter, because a worker
// in any other job would not match any filter.
for (const string& job_name : filter_job_names) {
VLOG(2) << "Selectively listing workers in job: " << job_name;
std::vector<string> workers_in_job;
worker_cache->ListWorkersInJob(job_name, &workers_in_job);
workers.insert(workers.end(), workers_in_job.begin(),
workers_in_job.end());
}
} else {
// If any of the device filters does not have a job specified, then we
// must list the workers from all jobs.
VLOG(2) << "Listing workers in all jobs because some device "
<< "filter has no job specified. Filters were:";
if (device_filters.empty()) {
VLOG(2) << "- <NO FILTERS>";
} else {
for (const string& filter : device_filters) {
VLOG(2) << "- " << filter;
}
}
worker_cache->ListWorkers(&workers);
}
for (const string& name : workers) {
if (MatchFilters(name) ||
DeviceNameUtils::IsSameAddressSpace(name, local_device_name)) {
targets_.push_back(name);
}
}
}
seen_targets_.assign(targets_.size(), false);
}
4.1.3 GetRemoteDevices
GetRemoteDevices 方法会获取远端设备,逻辑如下:
- 利用 finder.Start() 来给集群内部所有 Worker 广播 GetStatusRequest。
- 利用 finder.Wait() 收集所有 Worker 返回的 GetStatusResponse 消息。
- 利用 finder.GetRemoteDevices 获取查询结果,并且返回给客户。
static Status GetRemoteDevices(
const protobuf::RepeatedPtrField<string>& device_filters, MasterEnv* env,
WorkerCacheInterface* worker_cache,
std::vector<std::unique_ptr<Device>>* out_remote) {
DeviceFinder finder(device_filters, env, worker_cache);
finder.Start();
TF_RETURN_IF_ERROR(finder.Wait());
finder.GetRemoteDevices(env->local_devices, out_remote);
return Status::OK();
}
4.1.3.1 Start
Start 方法会把计数器 num_pending_ 初始化为 Worker 数目,然后遍历 Worker,逐一调用 NewRemoteDevices 进行处理。
void Start() {
{
mutex_lock l(mu_);
num_pending_ = targets_.size();
if (num_pending_ == 0) {
pending_zero_.notify_all();
}
}
// Talk to all workers to get the list of available devices.
using std::placeholders::_1;
using std::placeholders::_2;
for (size_t i = 0; i < targets_.size(); ++i) {
// TODO(mrry): Propagate a timeout here, since `this->WhenFound()` may
// never be called.
NewRemoteDevices(env_->env, worker_cache_, targets_[i],
std::bind(&ME::WhenFound, this, i, _1, _2));
}
}
NewRemoteDevices 逻辑如下:
- 依据 worker_name 调用 GetOrCreateWorker 在 worker_cache 内部查找 WorkerInterface 对象,如果有就获取,没有就构建。
- 然后构建 GetStatusRequest,发送给找到的 Worker,具体通过 GetStatusAsync 完成。
- Worker 返回 GetStatusResponse 之后,将调用回调函数 cb (WhenFound方法)之中的函数对象来获取 Worke 的设备信息。这里需要对获取到的设备信息进行处理,添加 worker_name。
void NewRemoteDevices(Env* env, WorkerCacheInterface* worker_cache,
const string& worker_name, NewRemoteDevicesDone done) {
WorkerInterface* wi = worker_cache->GetOrCreateWorker(worker_name);
if (wi == nullptr) {
std::vector<Device*> empty;
done(errors::NotFound("Device ", worker_name, " is not found."), &empty);
return;
}
struct Call {
GetStatusRequest req; // 发送消息
GetStatusResponse resp; // 相应消息
};
Call* call = new Call;
// 回调函数
auto cb = [env, worker_cache, worker_name, done, wi,
call](const Status& status) {
Status s = status;
std::vector<Device*> remote_devices;
auto cleanup = gtl::MakeCleanup(
[&worker_cache, &worker_name, &wi, &done, &remote_devices, &s, call] {
worker_cache->ReleaseWorker(worker_name, wi);
done(s, &remote_devices);
delete call;
});
if (s.ok()) {
DeviceNameUtils::ParsedName worker_name_parsed;
if (!DeviceNameUtils::ParseFullName(worker_name, &worker_name_parsed) ||
!worker_name_parsed.has_job || !worker_name_parsed.has_replica ||
!worker_name_parsed.has_task) {
s = errors::InvalidArgument("Could not parse worker name: ",
worker_name);
return;
}
remote_devices.reserve(call->resp.device_attributes_size());
for (const DeviceAttributes& da : call->resp.device_attributes()) {
DeviceNameUtils::ParsedName device_name_parsed;
CHECK(DeviceNameUtils::ParseFullName(da.name(), &device_name_parsed))
<< "Device attribute name '" << da.name() << "' could not be "
<< "parsed. Device Attribute: " << da.DebugString();
// Preserve the exact name, if possible.
if (device_name_parsed.job == worker_name_parsed.job &&
device_name_parsed.replica == worker_name_parsed.replica &&
device_name_parsed.task == worker_name_parsed.task) {
auto d = new RemoteDevice(env, da);
remote_devices.push_back(d);
} else {
DeviceAttributes da_rewritten = da;
da_rewritten.set_name(DeviceNameUtils::FullName(
worker_name_parsed.job, worker_name_parsed.replica,
worker_name_parsed.task, device_name_parsed.type,
device_name_parsed.id));
auto d = new RemoteDevice(env, da_rewritten);
// Experimental: Skipping over adding any TPU-type devices that aren't
// on the job called "worker" (but still adds the CPUs of other jobs).
if (getenv("TPU_NO_POPULATE_DEVICE_LIST_FROM_CLUSTER_SPEC") !=
nullptr) {
if (worker_name_parsed.job == "worker" ||
device_name_parsed.type.find("TPU") == std::string::npos) {
remote_devices.push_back(d);
}
} else {
remote_devices.push_back(d);
}
}
}
}
};
wi->GetStatusAsync(/*opts=*/nullptr, &call->req, &call->resp,
/*fail_fast=*/false, cb);
}
4.1.3.2 Wait
Wait 方法之中,如果计数器不为 0,则一直调用 pending_zero_.wait_for 等待,期间主线程会周期性睡眠 10 秒钟。
Status Wait() {
mutex_lock l(mu_);
// TODO(mrry): Propagate a timeout here, since `num_pending_` may
// never become zero.
while (num_pending_ != 0) {
pending_zero_.wait_for(l, std::chrono::milliseconds(kLoggingPeriodMs));
if (num_pending_ != 0) {
for (size_t i = 0; i < targets_.size(); ++i) {
if (!seen_targets_[i]) {
LOG(INFO)
<< "CreateSession still waiting for response from worker: "
<< targets_[i];
}
}
}
}
return status_;
}
4.1.3.3 回调函数
Start 的回调函数如下,如果收到了某个 Worker 的GetStatusResponse 消息,则 Start 会调用到此。WhenDone将计数器减 1,如果计数器为 0,则调用 pending_zero_.notify_all(),这样 wait 之中的 pending_zero_.wait_for 语句 会被唤醒,GetRemoteDevices 方法就会利用 finder.GetRemoteDevices 获取查询结果,并且返回给客户。
void WhenFound(int target_index, const Status& s,
std::vector<Device*>* devices) {
mutex_lock l(mu_);
seen_targets_[target_index] = true;
if (!s.ok()) {
LOG(ERROR) << "CreateSession failed because worker "
<< targets_[target_index] << " returned error: " << s;
status_.Update(s);
} else {
found_.insert(found_.end(), devices->begin(), devices->end());
devices->clear();
}
--num_pending_;
if (num_pending_ == 0) {
pending_zero_.notify_all();
}
}
4.2 Worker 交互
NewRemoteDevices 之中会通过 GetStatusAsync 来构建 GetStatusRequest,发送给找到的 Worker。
WorkerInterface* wi = worker_cache->GetOrCreateWorker(worker_name);
wi->GetStatusAsync(/*opts=*/nullptr, &call->req, &call->resp,
/*fail_fast=*/false, cb);
4.2.1 GrpcRemoteWorker
wi 就是找到的 WorkerInterface,实际就是 GrpcRemoteWorker,这是 gRPC 的客户端,通过 stub 调用远端 WorkerService 相应的服务接口。
void GetStatusAsync(CallOptions* call_opts, const GetStatusRequest* request,
GetStatusResponse* response, bool fail_fast,
StatusCallback done) override {
IssueRequest(request, response, getstatus_, std::move(done), call_opts,
fail_fast);
}
4.2.2 GrpcWorkerService
远端 Worker 之中,接收到消息是在 GrpcWorkerService 之中,当收到 GetStatusRequest 消息,将 由 GetStatusHandler 回调处理,GetStatusHandler 是一个宏。
#define HANDLE_CALL(method, may_block_on_compute_pool) \
void method##Handler(WorkerCall<method##Request, method##Response>* call) { \
auto closure = [this, call]() { \
Status s = worker_->method(&call->request, &call->response); \
if (!s.ok()) { \
VLOG(3) << "Bad response from " << #method << ": " << s; \
} \
call->SendResponse(ToGrpcStatus(s)); \
}; \
if ((may_block_on_compute_pool)) { \
worker_->env()->env->SchedClosure(std::move(closure)); \
} else { \
worker_->env()->compute_pool->Schedule(std::move(closure)); \
} \
ENQUEUE_REQUEST(method, false); \
}
HANDLE_CALL(GetStatus, false);
4.2.3 Worker
最后来到 Worker 类,其实它也只是转交给 DeviceMgr,并最终通过 GetStatusResponse 消息返回给远端调用方。
void Worker::GetStatusAsync(CallOptions* opts, const GetStatusRequest* request,
GetStatusResponse* response, bool fail_fast,
StatusCallback done) {
const DeviceMgr* dm = env_->device_mgr;
std::vector<DeviceAttributes> devices;
dm->ListDeviceAttributes(&devices);
response->mutable_device_attributes()->Reserve(devices.size());
for (auto& d : devices) {
response->add_device_attributes()->Swap(&d);
}
done(Status::OK());
}
4.2.4 DeviceMgr
ListDeviceAttributes 有两种本地设备信息汇总的实现,具体如下。
void StaticDeviceMgr::ListDeviceAttributes(
std::vector<DeviceAttributes>* devices) const {
devices->reserve(devices_.size());
for (const auto& dev : devices_) {
devices->emplace_back(dev->attributes());
}
}
实现 2 如下:
void DynamicDeviceMgr::ListDeviceAttributes(
std::vector<DeviceAttributes>* devices) const {
tf_shared_lock l(devices_mu_);
devices->reserve(dynamic_devices_.size());
for (const auto& d : dynamic_devices_) {
devices->emplace_back(d->attributes());
}
}
至此,我们分析完了 Cache 和查找设备集,接下来我们去看看业务如何处理。
0xFF 参考
https://jcf94.com/2018/02/28/2018-02-28-tfunpacking3/
什么是in-graph replication和between-graph replication?
[腾讯机智] TensorFlow源码解析(1): 创建会话
TensorFlow 分布式(Distributed TensorFlow)
tensorflow源码解析之distributed_runtime
Distributed TensorFlow: A Gentle Introduction
TensorFlow中的Placement启发式算法模块——Placer
TensorFlow的图切割模块——Graph Partitioner