[源码解析] PyTorch 分布式之弹性训练(2)---启动&单节点流程

[源码解析] PyTorch 分布式之弹性训练(2)---启动&单节点流程

0x00 摘要

在前面的文章之中,我们已经学习了PyTorch 分布式的基本模块,介绍了官方的几个例子,我们接下来会介绍PyTorch的弹性训练,本文是第二篇,重点关注的是如何启动弹性训练,并且可以对系统总体架构有所了解。

弹性训练系列文章如下:

[源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路

0x01 重要概念

为了更好的说明(这个说明可能在后面文章也会出现,因为太重要了),我们先总述一下TE 最重要的 Agent 和 Rendezvous 两个概念。

  • Agent :Agent是运行在单节点上的独立后台进程,可以认为是 worker manager 或者 process supervisor,其负责启动worker,监控 worker 运行,捕获woker异常,通过 rendezvous 实现 worker 间的相互发现(比如把状态上报到KVStore),成员变动时候基于 rendezvous 进行变更同步等等。
  • Rendezvous :为了实现弹性训练,需要有一个节点/进程之间彼此发现的机制。Rendezvous就是这个发现机制或者说同步组件。当系统启动或者成员变更时候,所有worker会(重新)集合(rendezvous)以建立一个新的进程组。

我们从源码中取出示意图看看,大家先有一个总体概念。

0x02 分布式运行

2.1 方式改变

2.1.1 原有方式

我们知道,PET是从 PyTorch v1.9 合并进来的,因为合并了弹性训练,所以分布式启动的方式有了很大的改变。

V1.9 之前是使用 torch/distributed/launch.py 进行启动,比如:

python -m torch.distributed.launch --nproc_per_node=NUM_GPUS_YOU_HAVE
           --nnodes=2 --node_rank=0 --master_addr="192.168.1.1"
           --master_port=1234 YOUR_TRAINING_SCRIPT.py (--arg1 --arg2 --arg3
           and all other arguments of your training script)

此处参数含义是:

  • nnodes :是参与训练的节点数目。
  • nproc_per_node :每个节点上运行的进程数目。
  • node_rank :当前节点标识符。
  • master_addrmaster_port 是 master 监听的地址和端口。

当运行时,torch.distributed.launch 会设置一些环境变量,包括 world_sizemaster_addrmaster_port 等等。然后在当前机器上创建 nproc_per_node 个进程,这些进程构成了一个本地组。如果一共有 NODE_SIZE 个机器参与训练,则一共有 NODE_SIZE * TRAINERS_PER_NODE 个进程。如果想启动一个分布式训练任务,则需要在所有的机器上执行相关命令。

2.1.2 目前方式

PyTorch 1.9 使用 torch/distributed/run.py 进行启动。如果依然采用 torch/distributed/launch.py,其实其内部已经透传给 run.py,具体参见代码:

def main(args=None):
    logger.warn(
        "The module torch.distributed.launch is deprecated "
        "and going to be removed in future."
        "Migrate to torch.distributed.run"
    )
    args = parse_args(args)
    run(args)

torch.distributed.run是之前torch.distributed.launch的一个超集,提供如下新功能:

  • 容错:通过重新启动所有workers,可以优雅地处理worker故障。
  • 自动:Worker 的RANKWORLD_SIZE 是自动分配的
  • 弹性:允许在最小值和最大值(弹性)之间更改节点数。

为了使用弹性训练,用户代码也需要做一些修改,如果用户的训练脚本已经支持 torch.distributed.launch ,则只需要修改几处就可以使用torch.distributed.run

  • 无需手动传递RANK , WORLD_SIZE , MASTER_ADDR 和 MASTER_PORT。
  • 必须提供rdzv_backendrdzv_endpoint。对于大多数用户来说,这其实就是“c10d”(参见“rendezvous“)。其实这就替代了之前的MASTER_ADDR 和 MASTER_PORT。
  • use_env 参数已被删除。请从 LOCAL_RANK 环境变量中获取local_rank (例如,os.environ["LOCAL_RANK"])。
  • 用户需要确保脚本中有 load_checkpoint(path)save_checkpoint(path) 逻辑,即手动处理Checkpoint。因为当worker失败时,我们将使用最近的checkpoint来恢复现场,重启所有worker。

下面是一个训练脚本的示例,该脚本在每个epoch上设置检查点,因此在失败时最差也只是会丢失一个epoch的训练成果。

  def main():
       args = parse_args(sys.argv[1:])
       state = load_checkpoint(args.checkpoint_path)
       initialize(state)

       # torch.distributed.run ensure that this will work
       # by exporting all the env vars needed to initialize the process group
       torch.distributed.init_process_group(backend=args.backend)

       for i in range(state.epoch, state.total_num_epochs)
            for batch in iter(state.dataset)
                train(batch, state.model)

            state.epoch += 1
            save_checkpoint(state)

所以,我们接下来看看在新模式之下,如何分布式启动。

2.2 部署

部署一般按照如下方式。

  1. (C10d后端不需要)启动 rendezvous 后端服务器,并获取端点(作为--rdzv_endpoint传递给启动程序脚本)
  2. 单节点多 worker:在主机上启动 launcher 以启动代理进程,代理会创建并监视本地工作组。
  3. 多节点多 worker:在所有节点上使用相同的参数启动 launcher 参加训练。

当使用作业/群集管理器时,多节点作业的入口点命令应为 launcher。

2.3 示例

我们首先通过几个例子来看看如何启动分布式训练。

2.3.1 单节点多worker启动

单节点多worker的启动方式如下,其实就是Standalone 模式,这是分布式模式的一种特例,具体就是针对单机多 Worker 提供了一些便利设置。

python -m torch.distributed.run
        --standalone
        --nnodes=1
        --nproc_per_node=$NUM_TRAINERS
        YOUR_TRAINING_SCRIPT.py (--arg1 ... train script args...)

2.3.2 容错方式启动

如下是容错方式启动,固定数目workers,没有弹性训练。 --nproc_per_node=$NUM_TRAINERS 一般是 单节点上GPU 个数。

python -m torch.distributed.run
        --nnodes=$NUM_NODES
        --nproc_per_node=$NUM_TRAINERS
        --rdzv_id=$JOB_ID
        --rdzv_backend=c10d
        --rdzv_endpoint=$HOST_NODE_ADDR
        YOUR_TRAINING_SCRIPT.py (--arg1 ... train script args...)

HOST_NODE_ADDR, 的格式是: [:] ,指定了 C10d rendezvous 后端所运行的节点地址和端口,这个节点可以是训练集群中任意节点,但是最好找一个高带宽的节点。

2.3.3 弹性方式启动

下面是弹性训练,弹性区间为 (min=1, max=4)。通过指定rdzv参数,可以实现多机训练,具备容错与弹性能力

在多台机器上分别执行以下命令启动:最小节点数为MIN_SIZE,最大为MAX_SIZE,利用etcd服务实现一致性和信息同步。

python -m torch.distributed.run
        --nnodes=1:4
        --nproc_per_node=$NUM_TRAINERS
        --rdzv_id=$JOB_ID
        --rdzv_backend=c10d
        --rdzv_endpoint=$HOST_NODE_ADDR
        YOUR_TRAINING_SCRIPT.py (--arg1 ... train script args...)

HOST_NODE_ADDR, 的格式是: [:] ,指定了 C10d rendezvous 后端所运行的节点地址和端口,这个节点可以是训练集群中任意节点,但是最好找一个高带宽的节点。

关于 rendezvous backend,有几点说明:

对于多节点训练,需要指定:

  • --rdzv_id: 一个唯一的 job id,在参与job的所有节点之间共享。
  • --rdzv_backend: torch.distributed.elastic.rendezvous.RendezvousHandler 的一个实现。 (--rdzv_backend默认是static模式,不支持容错和弹性伸缩)
  • --rdzv_endpoint: rendezvous backend 所运行的 endpoint,通常格式为:host:port。就是取代了之前的 master address / port 设置。

目前,以下几种后端可以直接使用,c10d (推荐), etcd-v2, and etcd (legacy) 。为了使用 etcd-v2 或者 etcd,需要搭建一个 v2 api开启的 etcd server (即. --enable-v2)。

0x03 启动脚本

既然以上启动都是用 torch/distributed/run.py,所以我们仔细分析一下这个脚本,该脚本提供三个功能:

  • 依靠"重启所有 workers"来处理 worker 失败;

  • 自动分配 worker 的RANK and WORLD_SIZE

  • 弹性训练,即 node 数目允许在minimum和maximum之间改变;

3.1 参数定义

启动脚本中,一些参数定义如下:

  • Node - 物理实例或容器;映射到与 job manager 所协调的单元。
  • Worker - 分布式训练环境中的worker。
  • WorkerGroup - 执行相同功能的一组worker(例如trainers)。
  • LocalWorkerGroup - 在同一节点上运行的工作组中的workers子集。
    • 一个节点运行 LOCAL_WORLD_SIZE个workers,这些 workers 组成LocalWorkerGroup
    • 节点上所有LocalWorkerGroups组成WorkerGroups
  • RANK - 工作组中worker的rank,是全局rank,可以认为是一个全局GPU资源列表。
    • Rank是不稳定的,在重启之间,本地Workers 会被分配到不同的ranks,所以不要在代码中对RANKLOCAL_RANK的稳定性做任何假设和依赖编码。
    • rendezvous完成后,其所有成员将对工作成员资格以及每个人在其中的角色(role)达成共识。此角色(role)使用一个介于 0 ~ world size 之间的整型来表示,被称之为rank。
  • LOCAL_RANK - 本地工作组中,某个worker 的 rank,可以认为是当前节点上的GPU资源列表。
  • GROUP_RANK - worker group的rank。介于0和“最大节点数”之间的数字。如果每个节点运行一个单一工作组,那GROUP_RANK就是这个节点的rank。
  • ROLE_RANK - 对于具有相同角色worker来说,他们之间共享的rank,角色在“WorkerSpec”中被指定。
  • WORLD_SIZE - 工作组中worker的总数。因为节点会加入/离开,所以WORLD_SIZE会变化,不能依赖 WORLD_SIZE的稳定性进行编码。
  • LOCAL_WORLD_SIZE - 本地工作组的大小,即本地运行的worker数目,等于在torch.distributed.run运行时候指定的--nproc_per_node。目前,torch/distributed/run.py 仅支持同构的 LOCAL_WORLD_SIZE。也就是说,假设所有节点运行相同数量的本地工作者(每个角色)。
  • ROLE_WORLD_SIZE - 具有同样角色的workers总数,在 WorkerSpec之中被指定。
  • rdzv_id - 用户定义的id,用于唯一标识作业的工作组。这个id在每个节点加入特定工作组时候使用。
  • rdzv_backend-rendezvous 的后端(例如“c10d”)。这通常是一个强一致性的键值存储。
  • rdzv_endpoint - rendezvous 后端端点;通常以“<host>:<port>”的形式出现。
  • run_id: 用户定义的id,它唯一地标识分布式应用程序的一个实例。它通常映射到作业id并用于允许节点加入正确的分布式应用程序。
  • TORCHELASTIC_RUN_ID - 与 rendezvous run_id 相等,即唯一的job id。
  • TORCHELASTIC_RESTART_COUNT - 迄今为止,工作组重启的次数。
  • TORCHELASTIC_MAX_RESTARTS - 配置的最大重启数目。

3.2 相关函数/变量

为了更好的理解上面的参数,我们选取部分相关函数/变量看看。

world_size,rank

这两个变量是动态生成的,所以从 state 之中取出。

rank, world_size = self._get_world()
    
def _get_world(self) -> Tuple[int, int]:
	state = self._state_holder.state
	return state.participants[self._this_node], len(state.participants)

_pg_group_ranks

该全局变量存储了每个 group 的 global rank 到 local rank 映射信息。

# Process group's global rank to local rank mapping
_pg_group_ranks: Dict[ProcessGroup, Dict[int, int]] = {}

其赋值举例如下:

# Create the global rank to group rank mapping
_pg_group_ranks[pg] = {
    global_rank: group_rank
    for group_rank, global_rank in enumerate(ranks)
}

group_rank

我们可以利用 global rank 从 _pg_group_ranks 之中提取对应的 local rank。

def _get_group_rank(group: ProcessGroup, rank):
    """
    Helper that gets a given group's local rank in the group from a given global
    rank.
    """
    if group is GroupMember.WORLD:
        raise RuntimeError("group.WORLD does not have local rank to global "
                           "rank mapping")
    if group not in _pg_group_ranks:
        raise RuntimeError("The given group does not exist")
    try:
        group_rank = _pg_group_ranks[group][rank]
    except KeyError:
        raise RuntimeError(f"The global rank {rank} is not part of the group {group}") from None
    return group_rank

global_rank

我们可以利用一个 group 的 local rank 获取到其 gloabl rank。

def _get_global_rank(group, group_rank):
    """
    Helper that gets a given group's global rank from a given local rank in the
    group.
    """
    if group is GroupMember.WORLD:
        raise RuntimeError("group.WORLD does not have local rank to global "
                           "rank mapping")
    group_rank_map = _pg_group_ranks[group]
    for rank, grp_rank in group_rank_map.items():
        if grp_rank == group_rank:
            return rank
    raise RuntimeError("The group rank is not part of the group")

group_size

我们可以 _get_group_size 获取到某一个group 的大小。

def _get_group_size(group):
    """
    Helper that gets a given group's world size.
    """
    if group is GroupMember.WORLD or group is None:
        default_pg = _get_default_group()
        return default_pg.size()
    if group not in _pg_group_ranks:
        raise RuntimeError("The given group does not exist")
    return len(_pg_group_ranks[group])

nproc_per_node

这个变量可以得到每个node之上支持多少个进程。

def determine_local_world_size(nproc_per_node: str):
    try:
        logging.info(f"Using nproc_per_node={nproc_per_node}.")
        return int(nproc_per_node)
    except ValueError:
        if nproc_per_node == "cpu":
            num_proc = os.cpu_count()
            device_type = "cpu"
        elif nproc_per_node == "gpu":
            if not torch.cuda.is_available():
                raise ValueError("Cuda is not available.")
            device_type = "gpu"
            num_proc = torch.cuda.device_count()
        elif nproc_per_node == "auto":
            if torch.cuda.is_available():
                num_proc = torch.cuda.device_count()
                device_type = "gpu"
            else:
                num_proc = os.cpu_count()
                device_type = "cpu"
        else:
            raise ValueError(f"Unsupported nproc_per_node value: {nproc_per_node}")
        )
        return num_proc

3.3 脚本入口

脚本入口主要代码如下,可以看到,其调用到了 elastic_launch 来完成功能,所以我们下一节就要顺藤摸瓜来看看这个函数。

from torch.distributed.launcher.api import LaunchConfig, elastic_launch

def run(args):
    if args.standalone: # 有两种模式:Standalone 模式和分布式模式,这里要判断一下
        args.rdzv_backend = "c10d"
        args.rdzv_endpoint = "localhost:29400"
        args.rdzv_id = str(uuid.uuid4())
        log.info(
            f"\n**************************************\n"
            f"Rendezvous info:\n"
            f"--rdzv_backend={args.rdzv_backend} "
            f"--rdzv_endpoint={args.rdzv_endpoint} "
            f"--rdzv_id={args.rdzv_id}\n"
            f"**************************************\n"
        )

    config, cmd, cmd_args = config_from_args(args)
    elastic_launch(
        config=config,
        entrypoint=cmd,
    )(*cmd_args)


def main(args=None):
    args = parse_args(args)
    run(args)


if __name__ == "__main__":
    logging.basicConfig(
        level=logging.INFO, format="[%(levelname)s] %(asctime)s %(module)s: %(message)s"
    )
    main()

0x04 单体总体流程

我们下面就从 elastic_launch 开始,看看在单节点上如何启动运行。我们首先给出一个总体示意图,图上是两个节点,每个节点有一个 agent,agent下面是一个 worker group,组下面是4个worker。

4.1 小例子

我们再从源码中找一个例子来看看,这里只是设置了两个workers。

import uuid
import torch
from torch.distributed.launcher.api import LaunchConfig, elastic_launch

def worker_fn(t1, t2):
    return torch.add(t1, t2)

def main():
    t1 = torch.rand((3,3), requires_grad=True)
    t2 = torch.rand((3, 3), requires_grad=True)

    config = LaunchConfig(
        min_nodes=2,
        max_nodes=4,
        nproc_per_node=1,
        run_id=str(uuid.uuid4()),
        role="trainer",
        rdzv_endpoint="localhost:29400",
        rdzv_backend="c10d",
        max_restarts=1,
        monitor_interval=1,
        start_method="spawn",
    )

    outputs = elastic_launch(config, worker_fn)(t1, t2)

if __name__ == '__main__':
    main()

输出如下,可以看到有两个 worker 进程 和一个 agent 进程。

{"name": "torchelastic.worker.status.SUCCEEDED", "source": "WORKER", "timestamp": 0, "metadata": {"run_id": "7fbf85fe-b8b3-462e-887e-8121e3062e0b", "global_rank": 0, "group_rank": 0, "worker_id": "12172", "role": "trainer", "hostname": "DESKTOP-0GO3RPO", "state": "SUCCEEDED", "total_run_time": 31, "rdzv_backend": "c10d", "raw_error": null, "metadata": "{\"group_world_size\": 1, \"entry_point\": \"worker_fn\", \"local_rank\": [0], \"role_rank\": [0], \"role_world_size\": [2]}", "agent_restarts": 0}}

{"name": "torchelastic.worker.status.SUCCEEDED", "source": "WORKER", "timestamp": 0, "metadata": {"run_id": "7fbf85fe-b8b3-462e-887e-8121e3062e0b", "global_rank": 1, "group_rank": 0, "worker_id": "3276", "role": "trainer", "hostname": "DESKTOP-0GO3RPO", "state": "SUCCEEDED", "total_run_time": 31, "rdzv_backend": "c10d", "raw_error": null, "metadata": "{\"group_world_size\": 1, \"entry_point\": \"worker_fn\", \"local_rank\": [1], \"role_rank\": [1], \"role_world_size\": [2]}", "agent_restarts": 0}}

{"name": "torchelastic.worker.status.SUCCEEDED", "source": "AGENT", "timestamp": 0, "metadata": {"run_id": "7fbf85fe-b8b3-462e-887e-8121e3062e0b", "global_rank": null, "group_rank": 0, "worker_id": null, "role": "trainer", "hostname": "DESKTOP-0GO3RPO", "state": "SUCCEEDED", "total_run_time": 31, "rdzv_backend": "c10d", "raw_error": null, "metadata": "{\"group_world_size\": 1, \"entry_point\": \"worker_fn\"}", "agent_restarts": 0}}

4.2 入口

顺着代码我们深入挖掘一下。elastic_launch 的作用就是启动一个 torchelastic agent,然后通过这个 agent来调用用户程序入口,agent 会启动 worker 进行训练,并且管理 worker 生命周期

class elastic_launch:
    """
    Launches an torchelastic agent on the container that invoked the entrypoint.

        1. Pass the ``entrypoint`` arguments as non ``kwargs`` (e.g. no named parameters)/
           ``entrypoint`` can be a function or a command.
        2. The return value is a map of each worker's output mapped
           by their respective global rank.
    """

    def __init__(
        self,
        config: LaunchConfig,
        entrypoint: Union[Callable, str, None],
    ):
        self._config = config
        self._entrypoint = entrypoint

    def __call__(self, *args, **kwargs):
        return launch_agent(self._config, self._entrypoint, list(args)) # 内部会调用用户程序

4.3 启动代理

launch_agent 启动了一个 LocalElasticAgent,调用了其 run 方法。

@record
def launch_agent(
    config: LaunchConfig,
    entrypoint: Union[Callable, str, None],
    args: List[Any],
) -> Dict[int, Any]:
    if not config.run_id:
        run_id = str(uuid.uuid4().int)
        config.run_id = run_id

    entrypoint_name = _get_entrypoint_name(entrypoint, args)

    rdzv_parameters = RendezvousParameters(
        backend=config.rdzv_backend,
        endpoint=config.rdzv_endpoint,
        run_id=config.run_id,
        min_nodes=config.min_nodes,
        max_nodes=config.max_nodes,
        **config.rdzv_configs,
    )

    agent = None
    rdzv_handler = rdzv_registry.get_rendezvous_handler(rdzv_parameters)
    master_addr, master_port = _get_addr_and_port(rdzv_parameters)
    try:
        spec = WorkerSpec( # 1. 得到spec
            role=config.role,
            local_world_size=config.nproc_per_node,
            entrypoint=entrypoint,
            args=tuple(args),
            rdzv_handler=rdzv_handler, # RendezvousHandler
            max_restarts=config.max_restarts,
            monitor_interval=config.monitor_interval,
            redirects=config.redirects,
            tee=config.tee,
            master_addr=master_addr,
            master_port=master_port,
        )

        cfg = metrics.MetricsConfig(config.metrics_cfg) if config.metrics_cfg else None
        metrics.initialize_metrics(cfg)

        agent = LocalElasticAgent( # 2. 构建代理
            spec=spec, start_method=config.start_method, log_dir=config.log_dir
        )

        result = agent.run() # 3. 启动代理
        events.record(agent.get_agent_status_event(WorkerState.SUCCEEDED))
        if result.is_failed():
            # ChildFailedError is treated specially by @record
            # if the error files for the failed children exist
            # @record will copy the first error (root cause)
            # to the error file of the launcher process.
            raise ChildFailedError(
                name=entrypoint_name,
                failures=result.failures,
            )
        else:
            return result.return_values
    except ChildFailedError:
        raise
    except Exception:
        if agent:
            events.record(agent.get_agent_status_event(WorkerState.FAILED))
        else:
            events.record(_construct_event(config))
        raise
    finally:
        rdzv_handler.shutdown()

这里有几个关键点:

4.3.1 WorkerSpec

WorkerSpec :这是配置信息,里面包含了代理所需要的某些全局信息,比如 RendezvousHandler,role,entry(用户函数)。

spec = {WorkerSpec} 
   args = {tuple: 2} (tensor, tensor)
   fn = {NoneType} None
   local_world_size = {int} 1
   master_addr = {NoneType} None
   master_port = {NoneType} None
   max_restarts = {int} 1
   monitor_interval = {int} 1
   rdzv_handler = {DynamicRendezvousHandler}
   redirects = {Std} Std.NONE
   role = {str} 'trainer'
   tee = {Std} Std.NONE
   entry = worker_fn

代理会从这里提取各种所需信息。比如_start_workers 会从中获取 store。

use_agent_store = spec.rdzv_handler.get_backend() == "static"

此时逻辑为:

+--------------------------+      +---------------------------------------------------+
|LocalElasticAgent         |      | WorkerSpec                                        |
|                          |      |                                                   |
|     WorkerSpec +--------------> |      rdzv_handler = {DynamicRendezvousHandler} --------+
|                          |      |                                                   |    |
|     rdzv_run_id          |      |      entry = worker_fn                            |    |
|                          |      |                                                   |    |
|     store                |      |      role = {str} 'trainer'                       |    |
|                          |      |                                                   |    |
|                          |      +---------------------------------------------------+    |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |               +-----------------------------------------+     |
+--------------------------+               |DynamicRendezvousHandler                 |     |
                                           |                                         |     |
                                           |                                         |     |
                                           |   _settings: RendezvousSettings         | <---+
                                           |                                         |
                                           |   _store: Store                         |
                                           |                                         |
                                           |   _state_holder: _RendezvousStateHolder |
                                           |                                         |
                                           |   _op_executor: _RendezvousOpExecutor   |
                                           |                                         |
                                           +-----------------------------------------+

4.3.2 WorkerGroup

WorkerGroup 代表了一个工作组。WorkerGroup 作为一个整体来管理多个 workers,进行批量处理。

class WorkerGroup:
    """
    Represents the set of ``Worker`` instances for the given ``WorkerSpec``
    managed by ``ElasticAgent``. Whether the worker group contains cross
    instance workers or not depends on the implementation of the agent.
    """

    __slots__ = ["spec", "workers", "store", "group_rank", "group_world_size", "state"]

    def __init__(self, spec: WorkerSpec):
        self.spec = spec
        self.workers = [Worker(local_rank=i) for i in range(self.spec.local_world_size)]

        # assigned after rdzv
        self.store = None
        self.group_rank = None
        self.group_world_size = None

        self.state = WorkerState.INIT

在SimpleElasticAgent 初始化之中,会建立一个 WorkerGroup。

class SimpleElasticAgent(ElasticAgent):
    """
    An ``ElasticAgent`` that manages workers (``WorkerGroup``)
    for a single ``WorkerSpec`` (e.g. one particular type of worker role).
    """

    def __init__(self, spec: WorkerSpec, exit_barrier_timeout: float = 300):
        self._worker_group = WorkerGroup(spec)
        self._remaining_restarts = self._worker_group.spec.max_restarts
        self._store = None
        self._exit_barrier_timeout = exit_barrier_timeout
        self._total_execution_time = 0

具体如下:

+-----------------------------+      +------------------------------------------------+
| LocalElasticAgent           |      | WorkerSpec                                     |
|                             |      |                                                |
| +------------------------+  |      |   rdzv_handler = {DynamicRendezvousHandler} -------+
| |WorkerGroup             |  |      |                                                |   |
| |            spec +--------------> |   entry = worker_fn                            |   |
| |            workers     |  |      |                                                |   |
| |            store       |  |      |   role = {str} 'trainer'                       |   |
| |            group_rank  |  |      |                                                |   |
| |       group_world_size |  |      +------------------------------------------------+   |
| |                        |  |                                                           |
| +------------------------+  |                                                           |
|                             |                                                           |
| rdzv_run_id                 |                                                           |
| store                       |            +-----------------------------------------+    |
|                             |            |DynamicRendezvousHandler                 |    |
+-----------------------------+            |                                         |    |
                                           |                                         |    |
                                           |   _settings: RendezvousSettings         | <--+
                                           |                                         |
                                           |   _store: Store                         |
                                           |                                         |
                                           |   _state_holder: _RendezvousStateHolder |
                                           |                                         |
                                           |   _op_executor: _RendezvousOpExecutor   |
                                           |                                         |
                                           +-----------------------------------------+

4.4 代理运行

SimpleElasticAgent 是 LocalElasticAgent 的基类,所以会先运行到WorkerSpec.run 方法这里,run方法则调用了 _invoke_run。

    @prof
    def run(self, role: str = DEFAULT_ROLE) -> RunResult:
        start_time = time.monotonic()
        try:
            result = self._invoke_run(role) # 调用
            self._total_execution_time = int(time.monotonic() - start_time)
            self._record_metrics(result)
            self._record_worker_events(result)
            return result
        finally:
            # record the execution time in case there were any exceptions during run.
            self._total_execution_time = int(time.monotonic() - start_time)
            self._shutdown()

4.5 代理主循环

代理在 invoke_run 之中做如下操作:

  • 启动 _initialize_workers,这里会使用 _rendezvous 构建一个 rendezvous,然后调用 _start_workers 启动 workers。
  • 进入 while True 循环,在循环之中:
    • 通过 _monitor_workers 定期轮训用户程序运行情况,得到客户进程运行结果,然后依据情况作出判断。
      • 如果程序正常结束,则返回。
      • 如果程序出错,则重试,即重启所有 workers,如果重试次数达到依然有问题,就结束所有workers。
      • 如果节点成员关系有变化,比如scale up就会有新的节点在waiting,这时候就重启所有workers。
    def _invoke_run(self, role: str = DEFAULT_ROLE) -> RunResult:
        # NOTE: currently only works for a single role

        spec = self._worker_group.spec
        role = spec.role

        self._initialize_workers(self._worker_group) # 启动worker
        monitor_interval = spec.monitor_interval
        rdzv_handler = spec.rdzv_handler

        while True:
            assert self._worker_group.state != WorkerState.INIT
            # 定期监控
            time.sleep(monitor_interval)
            # 监控客户程序运行情况
            run_result = self._monitor_workers(self._worker_group) # 得到进程运行结果
            state = run_result.state
            self._worker_group.state = state

            put_metric(f"workers.{role}.remaining_restarts", self._remaining_restarts)
            put_metric(f"workers.{role}.{state.name.lower()}", 1)

            if state == WorkerState.SUCCEEDED:
                # 程序正常结束
                self._exit_barrier()
                return run_result
            elif state in {WorkerState.UNHEALTHY, WorkerState.FAILED}:
                # 程序出错
                if self._remaining_restarts > 0: # 重试
                    self._remaining_restarts -= 1
                    self._restart_workers(self._worker_group)
                else:
                    self._stop_workers(self._worker_group) # 重试次数达到,结束workers
                    self._worker_group.state = WorkerState.FAILED
                    self._exit_barrier()
                    return run_result
            elif state == WorkerState.HEALTHY:
                # 节点成员关系有变化,比如scale up,就会有新节点waiting
                # membership changes do not count as retries
                num_nodes_waiting = rdzv_handler.num_nodes_waiting()
                group_rank = self._worker_group.group_rank
                # 如果有新的节点在waiting,就重启所有workers
                if num_nodes_waiting > 0:
                    self._restart_workers(self._worker_group)
            else:
                raise Exception(f"[{role}] Worker group in {state.name} state")

于是最终逻辑如下:

+----------------------------------------------+
| LocalElasticAgent                            |
|                                              |    +---------------------------------------------------+
|  rdzv_run_id                                 |    | WorkerSpec                                        |
|                                              |    |                                                   |
|  store           +------------------------+  |    |      rdzv_handler = {DynamicRendezvousHandler} +-------+
|                  |WorkerGroup             |  |    |                                                   |    |
|  _pcontext       |            spec +------------> |      entry = worker_fn                            |    |
|                  |            workers     |  |    |                                                   |    |
|                  |            store       |  |    |      role = {str} 'trainer'                       |    |
|                  |            group_rank  |  |    |                                                   |    |
|                  |       group_world_size |  |    +---------------------------------------------------+    |
|                  |                        |  |                                                             |
|                  +------------------------+  |                                                             |
|  +----------------------------------------+  |                                                             |
|  | _invoke_run                            |  |                                                             |
|  |                                        |  |             +-----------------------------------------+     |
|  |   _initialize_workers +------------------------+        |DynamicRendezvousHandler                 |     |
|  |                                        |  |    |        |                                         |     |
|  |                                        |  |    |        |                                         |     |
|  |   while True:                          |  |    |        |   _settings: RendezvousSettings         | <---+
|  |       _monitor_workers(_worker_group)  |  |    |        |                                         |
|  |                +                       |  |    |        |   _store: Store                         |
|  |                | _pcontext.wait        |  |    |        |                                         |
|  |                |                       |  |    |        |   _state_holder: _RendezvousStateHolder |
|  +----------------------------------------+  |    |        |                                         |
|                   |                          |    |        |   _op_executor: _RendezvousOpExecutor   |
+----------------------------------------------+    |        |                                         |
                    |                               |        +-----------------------------------------+
                    |                               |
                    v                               v
         +-------------------------------------------------+
         |  +------------+  +------------+  +------------+ |
         |  |Process     |  |Process     |  |Process     | |
         |  |            |  |            |  |            | |
         |  |    work_fn |  |   work_fn  |  |    work_fn | |
         |  |            |  |            |  |            | |
         |  +------------+  +------------+  +------------+ |
         +-------------------------------------------------+

手机如下:

至此,脚本如何启动和单体流程我们分析完毕,下一篇我们来具体分析代理。

0xFF 参考

[PyTorch Elastic源码阅读](

posted @ 2021-12-24 09:01  罗西的思考  阅读(4693)  评论(0编辑  收藏  举报