[源码解析] Pytorch 如何实现后向传播 (2)---- 引擎静态结构
[源码解析] Pytorch 如何实现后向传播 (2)---- 引擎静态结构
0x00 摘要
前文最终我们提到了如下代码就是调用引擎来进行反向传播,其中:
- roots是包含有前向传播输出节点的 gradient_edge()(即输出节点的
(grad_fn_, 0)
)的 vector,也就是edge_list。 - inputs 是前向传播产生的梯度,如果没有配置,则初始化为(tensor(1.),)。
- outputs 是依据前向传播输入节点构建的后向传播输出边,这些边是(Function, input number) pair。
Engine::execute(roots, inputs, keep_graph, create_graph, accumulate_grad, outputs);
结合Engine定义,我们可以一一把这些输入与 execute 的参数对应起来。
auto Engine::execute(const edge_list& roots, // 反向传播的根节点
const variable_list& inputs, // 根节点的梯度
bool keep_graph, // 计算图是否需要保留
bool create_graph, // 是否需要构建微分图以进行高阶求导
bool accumulate_grad,
const edge_list& outputs // 需要输出梯度的节点
)
所以本文我们首先从静态角度来看引擎,就是看看其数据结构和静态性质。
系列前几篇链接如下:
[源码解析]PyTorch如何实现前向传播(1) --- 基础类(上)
[源码解析]PyTorch如何实现前向传播(2) --- 基础类(下)
[源码解析] PyTorch如何实现前向传播(3) --- 具体实现
[源码解析] Pytorch 如何实现后向传播 (1)---- 调用引擎
0x01 Engine
Engine 是autograd的核心,其实现了后向传播。后向传播方向是从根节点(就是正向传播的输出)到输出(就是正向传播的输入),在后向传播过程之中依据前向传播过程中设置的依赖关系生成了动态计算图。
Engine 入口 是execute函数,其逻辑如下:
- 根据根节点 roots 构建GraphRoot。
- 根据 roots 之中的Node实例 metadata 以及各层之间的关系来构建计算图。
- 通过next_edge不断的找到指向的下一个Edge,最终完成整个计算图的计算。
- 利用 Queue 来多线程完成反向计算的工作。
引擎定义在:torch/csrc/autograd/engine.cpp,这里只给出成员变量,最主要的变量是:
- device_ready_queues_ :ReadyQueue 列表 device_ready_queues_ 之中的每一个ReadyQueue都启动了一个工作线程。各个线程之间通过 device_ready_queues_ 来进行交互。注意,因为CPU线程会处理其调用的反向传播的CPU相关工作,所以每个 GraphTask 拥有自己的
cpu_ready_queue_
,用户可以向这些cpu_ready_queue_
发送待处理的工作。 - thread_pool_shared_ :线程池,用来多线程处理后向传播。
具体代码是:
// A single instance of this struct should be created through the whole process lifetime.
// The worker thread creation logic and Engine's destructor rely on this.
struct TORCH_API Engine {
// Ensures device_ready_queues_ are initialized only once
std::once_flag start_device_threads_flag_;
// Safe to read device_ready_queues_ without synchronization after initialization
std::vector<std::shared_ptr<ReadyQueue>> device_ready_queues_;
std::vector<std::function<void()>> final_callbacks_;
// To protect reads and writes to final_callbacks_
std::mutex post_callbacks_lock_;
// How many nested reentrant calls are allowed until a new thread is used
int max_recursion_depth_;
struct ThreadPoolShared {
// Data structures used by the threads for executing reentrant backwards
// tasks. See Note [Reentrant backwards]
// Number of available threads for processing new GraphTasks.
unsigned int num_workers_;
// The threads will wait on work_ to be notified of GraphTasks
std::condition_variable work_;
// To protect reads and writes to graphtask_queue_ and num_workers_
// and for synchronizing creating new threads when needed
std::mutex mutex_;
// Workers will process the GraphTasks added to this queue. A GraphTask is
// allocated inside Engine::execute and lives for the duration of execute
std::queue<std::weak_ptr<GraphTask>> graphtasks_queue_;
ThreadPoolShared() : num_workers_(0) {}
};
// Temporary workaround until shutting down threads is done
// We need shared ownership of all these objects because the threads are leaked
// when Engine shuts down, so there may be threads waiting on work_
// for the graphtasks_queue_ to be nonempty.
std::shared_ptr<ThreadPoolShared> thread_pool_shared_;
private:
// Number of non-reentrant threads
std::atomic<uint32_t> non_reentrant_device_thread_count_;
// Destructor will wait for non-reentrant threads to finish
std::condition_variable non_reentrant_device_thread_condvar_;
std::mutex non_reentrant_device_thread_mutex_;
// stop() must be called before the destruction path goes down to the base
// class, in order to avoid a data-race-on-vptr. Use this boolean to guard
// whether stop() has already been called, so we can call this in every
// destructor of the class hierarchy.
bool stopped_{false};
};
我们接下来就先介绍各种基础类,每个类我们力争结合其使用代码来分析。
0x02 GraphRoot
GraphRoot 是一个Node类型,Node其实就是原来的Function类。
struct TORCH_API GraphRoot : public Node {
GraphRoot(edge_list functions, variable_list inputs)
: Node(std::move(functions)),
outputs(std::move(inputs)) { // 把输入的 input 配置给 outputs 成员变量。
// Ensures calls to stream() on a GraphRoot instance reflect current stream(s)
// on devices of root grad tensors at the time the instance is constructed.
for (const auto& t : outputs) {
add_input_metadata(t);
}
}
variable_list apply(variable_list&& inputs) override {
return outputs; // apply 方法仅仅返回它的输入,就是梯度。Node 的其他派生类会有自己不同的实现。
}
variable_list outputs; // 梯度。其只是通过 apply() 来进行使用,就是 apply 方法返回这个outputs。
};
struct TORCH_API Identity : public Node {
variable_list apply(variable_list&& inputs) override;
};
2.1 构建
在 engine 之中,是用如下代码构建 GraphRoot。结合 execute 的调用方式,我们知道是使用 反向传播的根节点(起始点)和 根节点的梯度 inputs 来构建 GraphRoot。
// If we receive a single root, skip creating extra root node
bool skip_dummy_node = roots.size() == 1;
auto graph_root = skip_dummy_node ?
roots.at(0).function :
std::make_shared<GraphRoot>(roots, inputs);
我们再回忆一下 GraphRoot 之中的 Node这个基类被如何构建。可以看到 GraphRoot 就是使用边列表构建了基类 Node,反向传播的根节点 roots 就是 GraphRoot(Node)相关联的边,然后 GraphRoot 本身新增了成员变量 variable_list outputs(就是输入 input 参数)。
explicit Node(edge_list&& next_edges = edge_list())
: Node(/*sequence_nr=*/at::sequence_number::get_and_increment(),
std::move(next_edges)) {}
具体如下:
+------------------------------------+
| GraphRoot |
| |
| variable_list outputs +---------------> inputs 梯度,被透传给下游
| |
| |
| +----------------------------+ |
| | Node | |
| | | |
| | | |
| | edge_list next_edges_ +-----------> roots 起始点
| | | |
| +----------------------------+ |
| |
+------------------------------------+
2.2 作用
GraphRoot 的作用是:
- GraphRoot 就是后向传播的输入,就是根节点。
- 在构造 graph_root 时候:
- 如果只有一个root节点,则就直接使用root作为 GraphRoot 。
- 如果多个root,就构造一个GraphRoot(可以认为是虚拟根节点),把这些 root 作为参数构建一个GraphRoot,这个 GraphRoot 作为真正的根节点。root 就是 Node 的边。
- 从初始化函数可以看出来,引擎的输入inputs(反向传播的输入梯度)就是GraphRoot的输出 outputs。
- Function 的灵魂是 apply 方法,对于 GraphRoot 来说,其apply函数仅仅返回它的输入,这样,原始输入 input 就直接被 GraphRoot 透传给反向传播的下一阶段。
- 后续计算 compute_dependencies 会用这个 GraphRoot 来得到计算图的依赖关系,就是利用 GraphRoot 的 next_edges_ 来得到计算图的依赖关系。
// If we receive a single root, skip creating extra root node
bool skip_dummy_node = roots.size() == 1;
auto graph_root = skip_dummy_node ?
roots.at(0).function : // 如果只有一个root,就直接使用root作为 GraphRoot
std::make_shared<GraphRoot>(roots, inputs); // 如果多个root,就构造一个GraphRoot
auto min_topo_nr = compute_min_topological_nr(outputs);
// Now compute the dependencies for all executable functions
compute_dependencies(graph_root.get(), *graph_task, min_topo_nr);
0x03 GraphTask
我们先给出一个基本概念。GraphTask 实例代表一个动态图级别的资源管理对象,其拥有一次反向传播执行所需要的全部元数据,比如计算图中所有Node的依赖关系,还没有准备好Node的等待队列等等。如果允许重入反向传播,则会有多个GraphTask一起工作。
3.1 定义
GraphTask 其主要成员变量如下:
- outstanding_tasks_ :用来记录当前任务数目,如果数目为0,则说明任务结束了。 如果这个数量不为0,则此GraphTask依然需要运行。
- dependencies_ :用来判断后续节点是否已经可以被执行。
- not_ready_ :存储没有完成的function和其输入。
- grad_mode_ :是否需要进行梯度计算。反向计算期间执行的代码逻辑依靠AutoGradMode::is_enabled() 来判断当前是否是要计算grad。
- owner : GraphTask 所属线程的Device 数值。GraphTask是在哪个线程中创建的,该值就是那个线程中的worker_device的值。
- cpu_ready_queue_ :
- CPU线程专用于处理反向传播之中的CPU相关工作。因此所有Graph task都会维护自己的
cpu_ready_queue_
,CPU相关任务应该将发送到该队列。 - 对于每个
GraphTask
,我们维护cpu_ready_queue_
,这样在设备线程(即GPU)上执行时,如果是下一个NodeTask 应该在CPU上运行,我们就知道应该推送 NodeTask 到哪个就绪队列。
- CPU线程专用于处理反向传播之中的CPU相关工作。因此所有Graph task都会维护自己的
- mutex_ :保护如下变量:
not_ready_, dependencies_, captured_vars,has_error_, future_result_, cpu_ready_queue_, and leaf_streams
。 - keep_graph :用来指定一次反向计算后是否释放资源。
具体定义如下,这里只给出成员变量:
// GraphTask holds metadata needed for a single execution of backward()
struct GraphTask: std::enable_shared_from_this<GraphTask> {
std::atomic<uint64_t> outstanding_tasks_{0};
// Indicates if an error occurred while executing any task. When this is
// true, it signals all threads to stop executing.
std::atomic_bool has_error_{false};
std::atomic_bool future_completed_{false};
// It is safe to read grad_mode_ and keep_graph_ without synchronization
bool keep_graph_;
bool grad_mode_;
// To protect reads/writes to not_ready_, dependencies_, captured_vars_,
// has_error_, future_result_, cpu_ready_queue_, and leaf_streams.
std::mutex mutex_;
std::unordered_map<Node*, InputBuffer> not_ready_;
std::unordered_map<Node*, int> dependencies_;
struct ExecInfo {
struct Capture {
Capture(const Capture&) = delete;
Capture(Capture&&) = default;
Capture(int input_idx, int output_idx)
: input_idx_(input_idx), output_idx_(output_idx) {}
int input_idx_; // within Node inputs
int output_idx_; // within the output vector of a GraphTask
// This hook will be executed after a grad is captured. The captured
// grad will be replaced by the return value of the hook.
struct GradCaptureHook {
virtual ~GradCaptureHook() = default;
virtual at::Tensor operator()(const at::Tensor& grad) = 0;
};
// The hooks will be called one by one in the order as they were added.
// The input grad of a hook will be the output of its preceding hook. The
// first hook will take the captured grad as the input. The output of the
// last hook will replace the captured grad.
std::vector<std::unique_ptr<GradCaptureHook>> hooks_;
};
bool should_execute() const {
return needed_ || captures_;
}
bool needed_ = false;
std::unique_ptr<std::vector<Capture>> captures_;
};
// Exec info has a bit complicated semantics. If it's empty, it means the task
// is run in a "default" mode, which means that all next_edges we encounter
// should get executed. If it's not empty, only functions that have an entry
// and this entry has needed == True should be executed. exec_info is only empty
// when the graph is executed via .backward() and the inputs parameter is not passed.
// Otherwise, when executed through .grad(), or when inputs arg is specified for
// .backward(), exec_info will be non-empty.
//
// exec_info_ is safe to read without synchronization
std::unordered_map<Node*, ExecInfo> exec_info_;
// Captures variables are grads captured that we return to the user. After
// execution of the GraphTask is completed, the captured_vars_ are moved
// out of the GraphTask and are no longer valid.
std::vector<Variable> captured_vars_;
at::ThreadLocalState thread_locals_ =
at::ThreadLocalState(/* keep_grad_mode */ false);
std::unordered_set<c10::Stream> leaf_streams;
// The value of worker_device in the thread that created this task.
// See Note [Reentrant backwards]
// Safe to read owner_ and reentrant_depth_ without synchronizaton
int owner_;
// The number of parent graph tasks for this graph task
const int reentrant_depth_;
// Whether or not to stop execution for this GraphTask when an error is
// encountered. When set to true, this would cause Engine::execute() to throw
// an exception as soon as the autograd engine receives an exception.
bool exit_on_error_;
// CPU threads are dedicated to processing CPU work for the backward they invoked.
// So any given graph task maintains its own cpu_ready_queue_ where you should send
// work for it to be done. We memoize the cpu_ready_queue_ per GraphTask so that
// we know which ready queue we should push to if we are on device thread (i.e. GPU)
// and but next NodeTask should be run on CPU.
std::shared_ptr<ReadyQueue> cpu_ready_queue_;
// Future representing the completion of the graph task. Notified when all
// tasks are done.
std::shared_ptr<at::ivalue::Future> future_result_;
// Final callbacks installed during execution of this GraphTask
std::vector<std::function<void()>> final_callbacks_;
// To protect reads and writes to final_callbacks_. Intentionally no reusing
// mutex_ as the two are protecting different data structures.
std::mutex final_callbacks_lock_;
};
我们接下来看看一些重要成员变量。
3.2 outstanding_tasks_
是待处理 NodeTask的数量,用来判断该GrapTask是否还需要执行,其数值总是先加再减,如果数目为0,则说明任务结束了。
- 当 GraphTask 被创建出来时候,此数值为0。
- 如果有一个NodeTask被送入到 ReadyQueue,则outstanding_tasks_ 增加 1。
- 如果在工作线程作执行一次 evaluate_function(task)后,outstanding_tasks的值减1。
- 如果这个数量不为0,则此GraphTask依然需要运行。
3.2.1 任务结束
以下代码用来判断GraphTask是否结束。
bool GraphTask::completed() {
return outstanding_tasks_.load() == 0 ||
(exit_on_error_ && has_error_.load());
}
3.2.2 增加
NodeTask任务增加时 outstanding_tasks_ 就加一。即,往某一个 ReadyQueue 之中插入一个 NodeTask 时候, NodeTask 对应的GraphTask 就会把其 outstanding_tasks_ 增加一。
auto ReadyQueue::push(NodeTask item, bool incrementOutstandingTasks) -> void {
{
// Lock mutex for writing to heap_
std::lock_guard<std::mutex> lock(mutex_);
if (incrementOutstandingTasks) {
std::shared_ptr<GraphTask> graph_task = item.base_.lock();
++graph_task->outstanding_tasks_; // 增加
}
heap_.push(std::move(item));
}
not_empty_.notify_one();
}
3.2.3 递减
NodeTask 任务结束时候就减一,我们用简化代码看看。
auto Engine::thread_main(const std::shared_ptr<GraphTask>& graph_task) -> void {
while (graph_task == nullptr || !graph_task->future_result_->completed()) { //运行 GraphTask
std::shared_ptr<GraphTask> local_graph_task;
{
NodeTask task = local_ready_queue->pop();
if (task.fn_ && !local_graph_task->has_error_.load()) {
// 运行 NodeTask
evaluate_function(local_graph_task, task.fn_.get(), task.inputs_, local_graph_task->cpu_ready_queue_);
}
}
// Decrement the outstanding tasks.
--local_graph_task->outstanding_tasks_; // 运行 NodeTask完毕,这里减一
// Check if we've completed execution.
if (local_graph_task->completed()) { // 判断 GraphTask是否结束。
// 做相关处理工作
}
}
}
3.3 keep_graph
keep_graph 用来指定一次反向计算后是否释放资源。资源就是在前向过程中建立起来的资源。keep_graph如果是False的话,则会在 fn 执行完毕后调用 fn 的 will_release_variables 方法来释放该资源。
当执行反向传播时候,在 void Engine::evaluate_function 会调用
auto outputs = call_function(graph_task, func, inputs);
在 call_function 之中,如果发现不需要保持图,就释放资源。
static variable_list call_function(
std::shared_ptr<GraphTask>& graph_task,
Node* func,
InputBuffer& inputBuffer) {
CheckpointValidGuard cpvguard(graph_task);
auto& fn = *func;
auto inputs =
call_pre_hooks(fn, InputBuffer::variables(std::move(inputBuffer)));
if (!graph_task->keep_graph_) {
fn.will_release_variables(); // 如果不需要保持图,就调用释放。
}
// 省略其他
}
3.4 dependencies_
dependencies 用来判断后续节点是否已经可以被执行,其类型如下:
std::unordered_map<Node*, int> dependencies_;
dependencies成员在compute_dependencies调用中被初始化,只要一个grad_fn函数在别人的next_edges()中出现过一次,那么dependencies[this_grad_fn] 就自增1。如果dependencies[this_grad_fn]大于0,说明this_grad_fn有一个后向传播的依赖,即this_grad_fn需要等被依赖者完成,才能进行反向传播。
比如如下计算图:
# MulBackward0 被 SubBackward0 的next_edges引用 1 次,即 MulBackward0 需要等 SubBackward0 反向计算完成之后,才能进行自己的反向传播
dependencies[MulBackward0] = 1
#PowBackward0-1 被 MulBackward0 的next_edges用1次
dependencies[PowBackward0-1] = 1
#PowBackward0-2 被 MulBackward0 的next_edges用1次
dependencies[PowBackward0-2] = 1
我们结合具体代码(删除无关代码)看看。
void Engine::evaluate_function(
std::shared_ptr<GraphTask>& graph_task,
Node* func,
InputBuffer& inputs,
const std::shared_ptr<ReadyQueue>& cpu_ready_queue) {
// 执行后向计算
auto outputs = call_function(graph_task, func, inputs);
std::lock_guard<std::mutex> lock(graph_task->mutex_);
for (int i = 0; i < num_outputs; ++i) { // 遍历自己的输出
auto& output = outputs[i];
const auto& next = fn.next_edge(i); // 找到第i个输出
// Check if the next function is ready to be computed
bool is_ready = false;
// 得到依赖关系
auto& dependencies = graph_task->dependencies_;
auto it = dependencies.find(next.function.get()); // 找到第i个输出的依赖关系
if (it == dependencies.end()) {
auto name = next.function->name();
throw std::runtime_error(std::string("dependency not found for ") + name);
} else if (--it->second == 0) { // 因为本节点的后向计算已经完成,所以第i个输出的依赖数目减一
dependencies.erase(it); // 如果为0,说明没有依赖了,就从依赖关系之中删除
is_ready = true; // true 代表没有依赖关系,可以构建一个 NodeTask 进行下一步反向计算了
}
}
}
3.5 not_ready_
用来暂存未就绪的function及其输入,类型如下:
std::unordered_map<Node*, InputBuffer> not_ready_;
not_ready_ 是针对未就绪节点和其输入的map,假设某节点 A 在反向传播路径上有两个输入,当第一个输入完成时候,因为第二个输入没有完成反向计算,所以需要有一个地方暂存这个 A 和 其第一个输入以备后续处理。not_ready_ 就是用来做这个的。
not_ready_ 的 key 是未就绪节点,value 是这个节点目前就绪的输入列表。
-
第一次遇到某节点的一个输入之后,就把
(节点 A, A 的输入信息 )
放入 not_ready_ 这里,得到(节点 A, [A 的输入信息 1 ] )
-
后续遇到 A 的其他输入,就继续调整这里,把 A 的其他输入加入到 "A 的输入信息" 之中,比如得到
(节点 A, [A 的输入信息 1,A的输入信息 2 ] )
-
如果 此时 A 已经 ready,就把 A 和其输入信息 放入 一个 Ready Queue,然后从 not_ready_ 移除 节点 A。
-
如果 A 还没有 ready(A还需要其他输出),就继续维持 not_ready_ 的状态,把目前 A 输入都加入到 not_ready_ 里面。
我们结合代码看看。
auto& not_ready = graph_task->not_ready_;
auto not_ready_it = not_ready.find(next.function.get());
if (not_ready_it == not_ready.end()) { // 如果未就绪队列之中没有next节点
// Skip functions that aren't supposed to be executed
if (!exec_info_.empty()) {
auto it = exec_info_.find(next.function.get());
if (it == exec_info_.end() || !it->second.should_execute()) {
continue;
}
}
// No buffers have been allocated for the function
InputBuffer input_buffer(next.function->num_inputs()); // 整理 next 节点的输入参数信息
// Accumulates into buffer
const auto opt_next_stream = next.function->stream(c10::DeviceType::CUDA);
input_buffer.add(next.input_nr, // 插入 next 节点的输入参数信息
std::move(output),
opt_parent_stream,
opt_next_stream);
if (is_ready) { // is_ready 是前面小节之中,通过依赖关系计算出来的,true表示可以进行反向计算了
auto queue = ready_queue(cpu_ready_queue, input_buffer.device());
queue->push(
NodeTask(graph_task, next.function, std::move(input_buffer)));
} else {
// 还有依赖关系,不能进行反向计算,只能放入未就绪队列 not_ready_
not_ready.emplace(next.function.get(), std::move(input_buffer));
}
} else { // 如果未就绪队列之中已经有next节点
// The function already has a buffer
auto &input_buffer = not_ready_it->second;
// Accumulates into buffer
const auto opt_next_stream = next.function->stream(c10::DeviceType::CUDA);
input_buffer.add(next.input_nr, // 把最新完成反向计算的输入插入输入buffer input_buffer
std::move(output),
opt_parent_stream,
opt_next_stream);
if (is_ready) { // 如果可以计算,就放入ready 队列
auto queue = ready_queue(cpu_ready_queue, input_buffer.device());
queue->push(
NodeTask(graph_task, next.function, std::move(input_buffer)));
not_ready.erase(not_ready_it); // 同时从未就绪队列之中移除
}
}
3.6 exec_info_
ExecInfo 主要作用就是判断是否需要执行,并且注册了一个hook,用来在计算梯度时候做调用。
3.6.1 定义
定义如下:
struct ExecInfo {
struct Capture {
Capture(const Capture&) = delete;
Capture(Capture&&) = default;
Capture(int input_idx, int output_idx)
: input_idx_(input_idx), output_idx_(output_idx) {}
int input_idx_; // within Node inputs
int output_idx_; // within the output vector of a GraphTask
// This hook will be executed after a grad is captured. The captured
// grad will be replaced by the return value of the hook.
struct GradCaptureHook {
virtual ~GradCaptureHook() = default;
virtual at::Tensor operator()(const at::Tensor& grad) = 0;
};
// The hooks will be called one by one in the order as they were added.
// The input grad of a hook will be the output of its preceding hook. The
// first hook will take the captured grad as the input. The output of the
// last hook will replace the captured grad.
std::vector<std::unique_ptr<GradCaptureHook>> hooks_;
};
bool should_execute() const {
return needed_ || captures_;
}
bool needed_ = false;
std::unique_ptr<std::vector<Capture>> captures_;
};
在引擎之中生成如下成员变量。
// Exec info has a bit complicated semantics. If it's empty, it means the task
// is run in a "default" mode, which means that all next_edges we encounter
// should get executed. If it's not empty, only functions that have an entry
// and this entry has needed == True should be executed. exec_info is only empty
// when the graph is executed via .backward() and the inputs parameter is not passed.
// Otherwise, when executed through .grad(), or when inputs arg is specified for
// .backward(), exec_info will be non-empty.
//
// exec_info_ is safe to read without synchronization
std::unordered_map<Node*, ExecInfo> exec_info_;
3.6.2 作用
exec_info_ 的作用就是给 GraphTask 的每一个Node配置一个ExecInfo,就是执行信息。
-
如果exec_info_为空,说明该task运行在默认模式,即,所有遇到的 next_edges 都需要执行。
-
如果 exec_info_ 非空,说明只有特定 functions 才会被执行,这些 Functions 的特点是:拥有 entry,并且这个 entry 的 “has needed == True”。
exec_info_ 何时为空?何时非空?
- 当图被用 .backward() 执行,并且没有传递输入参数,则 exec_info 为空,就是全部执行。
- 如果只是使用用 .grad() 执行,或者使用.backward() 执行时候并且给定输入参数,那么 exec_info_ 非空。
所以,exec 和 captured_vars_ 就是针对 grad() 和指定参数的 backward(),就是标注在这种情况下需要计算哪些梯度。在这种情况下,只有某些节点需要执行,从这些节点开始,有一条路径通向 outpus
。
3.6.3 生成
在 Engine::execute 之中会调用 init_to_execute 生成ExecInfo。
if (!outputs.empty()) {
graph_task->init_to_execute(*graph_root, outputs, accumulate_grad, min_topo_nr);
}
逻辑是:
Populates exec_info so nodes that should be executed have `exec_info[node].needed_ = true` Only nodes that have a path to any edge in `outputs` should be executed.The code below populates exec_info using recursion, but the actual code does this iteratively. Refer to the numbering to see how the actual code corresponds.A difference to note is that in the iterative version, when you are working with the current Node, you are reponsible to update your parent's is_needed after all your children have been updated.
从其注释可知,其作用是:填充exec_info,以便应执行的节点具有exec_info[node].needed_ = true
。
只具特定节点才应该执行,这些节点的性质是:节点拥有一条路径,这路径可以通往outputs
的任何一条边。
下面的代码使用递归填充exec_info,但实际代码以迭代方式执行此操作。关键代码如下,就是插入ExecInfo信息 exec_info_.emplace(stack.back().fn_, ExecInfo());
。具体删减版代码如下:
void GraphTask::init_to_execute(Node& graph_root, const edge_list& outputs, bool accumulate_grad, uint64_t min_topo_nr) {
// Populates exec_info so nodes that should be executed have `exec_info[node].needed_ = true`
// Only nodes that have a path to any edge in `outputs` should be executed.
// The code below populates exec_info using recursion, but the actual code does this
// iteratively. Refer to the numbering to see how the actual code corresponds.
// A difference to note is that in the iterative version, when you are working with
// the current Node, you are reponsible to update your parent's is_needed after all your
// children have been updated.
//
// is_needed = {fn: True for fn in outputs} # (0)
// seen = {}
// def compute_is_needed(fn):
// for next_edge in fn.next_edges:
// child_fn = next_edge.fn
// if child_fn in seen and is_needed[child_fn]: # (1)
// is_needed[fn] = true
// else:
// seen.add(child_fn)
// if compute_is_needed(child_fn):
// is_needed[fn] = true # (2)
// # (3) exit for-loop
// return is_needed[fn]
// compute_is_needed(graph_root)
//
// NB: you might be wondering why we don't populate `seen` with outputs. We cannot
// because in the case where two outputs lie on the same path, we still need to explore past
// the first output or we would miss the nodes that are required to compute the second output.
// 这一段就是针对 grad() API 进行处理,只有在所求梯度的张量路径上的其他张量才会被计算梯度
int output_idx = 0;
for (auto & output_edge : outputs) { // 遍历输出边
// (0) `is_needed` above corresponds to `exec_info_[fn].needed_`
Node *output = output_edge.function.get();
auto & info = exec_info_[output];
if (accumulate_grad) {
// if called through `.backward()` we directly set `needed_` for all the outputs to true
info.needed_ = true;
} else {
if (!info.captures_) {
info.captures_ = make_unique<std::vector<ExecInfo::Capture>>();
}
// 第 i 个输入对应的输出
info.captures_->emplace_back(output_edge.input_nr, output_idx++);
}
}
captured_vars_.resize(output_idx);
auto nodeShouldExecute = [this](Node *fn) {
auto it = exec_info_.find(fn);
return it != exec_info_.end() && it->second.should_execute();
};
std::vector<Frame> stack;
std::unordered_set<Node*> seen;
stack.emplace_back(&graph_root);
exec_info_.emplace(stack.back().fn_, ExecInfo()); // 这里会初始化 exec_info_,有多个 exec_info
while (!stack.empty()) {
auto &frame = stack.back();
const auto fn = frame.fn_;
Node *child_fn = nullptr;
while((child_fn = frame.get_next_fn()) && !seen.emplace(child_fn).second) {
// (1) next child exists AND has already been seen
if (nodeShouldExecute(child_fn)) {
exec_info_[fn].needed_ = true;
}
}
if (child_fn) {
// (2) next child exists but has not been seen
if (child_fn->topological_nr() < min_topo_nr) {
// child created before the first output means this child cannot have
// an edge to output
continue;
}
stack.emplace_back(child_fn);
} else {
// (3) no next child exists for `fn` means its `needed` has already been
// finalized. pop stack and update parent
stack.pop_back();
if (nodeShouldExecute(fn) && !stack.empty()) {
exec_info_[stack.back().fn_].needed_ = true;
}
}
}
}
3.6.4 GradCaptureHook
其中,ExecInfo.Capture.GradCaptureHook 是要对梯度再做后续处理。
但是这个使用却是主要在分布式状态下,是因为分布式引擎有一个累积梯度的需要,这个必须在正常梯度操作之后的后置处理中完成。
在 DistEngine::computeDependencies 之中有添加操作:
// Create a dummy GraphRoot and run init_to_execute with it.
GraphRoot dummyRoot(edges, {});
graphTask->init_to_execute(dummyRoot, outputEdges, /*accumulate_grad=*/false, /*min_topo_nr=*/0);
for (auto& mapEntry : graphTask->exec_info_) {
auto& execInfo = mapEntry.second;
if (!execInfo.captures_) {
continue;
}
auto fn = mapEntry.first;
// There may be nodes other than 'AccumulateGrad', e.g. RecvRPCBackward,
// to be captured.
if (auto accumulateGradFn = dynamic_cast<AccumulateGrad*>(fn)) {
for (auto& capture : *execInfo.captures_) {
capture.hooks_.push_back( // 在这里添加 hook
std::make_unique<DistAccumulateGradCaptureHook>(
std::dynamic_pointer_cast<AccumulateGrad>(
accumulateGradFn->shared_from_this()),
autogradContext));
}
}
}
在 Engine::evaluate_function 之中有使用操作。
auto& exec_info_ = graph_task->exec_info_;
if (!exec_info_.empty()) {
auto& fn_info = exec_info_.at(func);
if (auto* capture_vec = fn_info.captures_.get()) {
// Lock mutex for writing to graph_task->captured_vars_.
std::lock_guard<std::mutex> lock(graph_task->mutex_);
for (const auto& capture : *capture_vec) {
// 获取到 captured_vars_,然后对其进行后置操作
auto& captured_grad = graph_task->captured_vars_[capture.output_idx_];
// 这里是引用操作,所以 captured_grad 的赋值实际就是往 graph_task->captured_vars_ 赋值
captured_grad = inputs[capture.input_idx_];
for (auto& hook : capture.hooks_) {
captured_grad = (*hook)(captured_grad); // 这里使用了 hook 进行后置操作
}
}
}
if (!fn_info.needed_) {
// Skip execution if we don't need to execute the function.
return;
}
}
3.7 captured_vars_
上面提到了 captured_vars_,我们因此就一并分析。
Captures variables是我们返回给用户的捕获梯度。GraphTask执行完成后,Captures variables 将移出GraphTask,不再有效。
// Captures variables are grads captured that we return to the user. After
// execution of the GraphTask is completed, the captured_vars_ are moved
// out of the GraphTask and are no longer valid.
std::vector<Variable> captured_vars_;
这个 captured_vars_ 是可以进行后续处理,就是使用上面提到的GradCaptureHook 在 evaluate_function 进行处理,具体赋值也是在 evaluate_function 其中,参见前面代码之中的注释,我们后文详细对函数也会有分析。
// This hook will be executed after a grad is captured. The captured
// grad will be replaced by the return value of the hook.
引擎进行后向传播操作,最后返回给调用者(比如Python代码)的output结果就是 captured_vars_。
void GraphTask::mark_as_completed_and_run_post_processing() {
// Allow only one thread one attempt to process this logic.
if (future_completed_.exchange(true)) {
// Future is already marked complete, or being marked as such.
// In case the marking complete is only in progress, we add a
// wait() to guarantee the future is marked complete on exit.
future_result_->wait();
return;
}
try {
// Run post processing, before marking the future as complete.
// Drop lock prior to completing, to avoid holding across callbacks.
std::unique_lock<std::mutex> lock(mutex_);
exec_post_processing();
std::vector<Variable> vars = std::move(captured_vars_); //最后返回的输出
// Need to unlock before we call markCompleted to avoid holding locks
// when the callbacks are called.
lock.unlock();
// NOLINTNEXTLINE(performance-move-const-arg)
future_result_->markCompleted(std::move(vars)); // 反向传播最后的返回输出
} catch (std::exception& e) {
future_result_->setErrorIfNeeded(std::current_exception());
}
}
0x04 NodeTask
4.1 缘由
对于NodeTask,我们有一个疑问:为什么要再增加一个新类型?而不是继续使用 GraphTask。
因为 GraphTask 只是包括本计算图的总体信息,但是具体某一个节点如何计算梯度,GraphTask 是不知道的,所以引入了一个新类型 NodeTask 来处理。NodeTask 这个类的对象正是在queue中传输的东西,就是一个可以被执行的求导函数。从下面的定义可以看到,我们使用GraphTask、Node、InputBuffer来构建一个NodeTask实例,可以认为,生产者不停的向 ReadyQueue 插入 NodeTask,消费者则从 ReadyQueue 之中提取 NodeTask 进行处理。
4.2 定义
NodeTask 定义如下:
struct NodeTask {
std::weak_ptr<GraphTask> base_; // 所属的GraphTask
std::shared_ptr<Node> fn_; // 需要执行的Node,比如 PowBackward0
// This buffer serves as an implicit "addition" node for all of the
// gradients flowing here. Once all the dependencies are finished, we
// use the contents of this buffer to run the function.
InputBuffer inputs_; // fn_的输入
// When worker receives a task with isShutdownTask = true, it will immediately
// exit. The engine sends a shutdown task to every queue upon its destruction.
bool isShutdownTask_;
int getReentrantDepth() const;
NodeTask(
std::weak_ptr<GraphTask> base,
std::shared_ptr<Node> fn,
InputBuffer inputs,
bool isShutdownTask = false)
: base_(base),
fn_(std::move(fn)),
inputs_(std::move(inputs)),
isShutdownTask_(isShutdownTask) {}
};
在主线程和工作线程之中都可以插入 NodeTask,我们逐一分析。
4.3 主线程生产
主线程有两种情况会产生 NodeTask。
- 刚启动时候,在 execute_with_graph_task 之中,主线程就是往 index = -1 的 CPU 工作线程的queue 发送一个 NodeTask。
// Now that all the non-thread safe fields of the graph_task have been populated,
// we can enqueue it.
// 主线程之中
queue->push(NodeTask(graph_task, std::move(graph_root), std::move(input_buffer)));
- 在 execute_with_graph_task 之中,当有重入的反向传播时候,也会插入 NodeTask:
// We set the worker_device to CPU_DEVICE only if worker_device was previously
// NO_DEVICE. Setting it to CPU afterwards allow us to detect whether this is
// a re-entrant call or not.
set_device(CPU_DEVICE);
// set the graph_task owner to the current device
graph_task->owner_ = worker_device;
// Now that all the non-thread safe fields of the graph_task have been populated,
// we can enqueue it.
queue->push(NodeTask(graph_task, std::move(graph_root), std::move(input_buffer)));
graph_root 的初始化我们可以回忆一下:
auto graph_root = skip_dummy_node ?
roots.at(0).function : // 如果只有一个root,就直接使用root作为 GraphRoot
std::make_shared<GraphRoot>(roots, inputs); // 如果多个root,就构造一个GraphRoot
graph_root 由roots和inputs构建,roots就是最终输出节点的gradient_edge(),比如 [ (MulBackward0实例,0),(PowerBackward0, 0) ]。inputs 如果用户没有指定,就是默认的 tensor(1.),如果指定了,就是起始梯度。
4.4 工作线程生产
在工作线程 thread_main 中,可以用如下方式构建新NodeTask实例,添加到queue中。
4.4.1 下一可计算节点
在 evaluate_function 之中,当完成一个节点的反向计算之后,会查找下一个可以计算的节点,如果找到了,就取出当前节点的下一条边,然后依据这个边构建一个NodeTask,放入对应的工作线程(依据下一条边的device等等信息)的 ReadyQueue。
for (int i = 0; i < num_outputs; ++i) { // 遍历输入节点
const auto& next = fn.next_edge(i); // 查找下一个可以计算的节点
if (not_ready_it == not_ready.end()) {
// Skip functions that aren't supposed to be executed
// No buffers have been allocated for the function
InputBuffer input_buffer(next.function->num_inputs());
// Accumulates into buffer
const auto opt_next_stream = next.function->stream(c10::DeviceType::CUDA);
input_buffer.add(next.input_nr,
std::move(output),
opt_parent_stream,
opt_next_stream);
if (is_ready) {
auto queue = ready_queue(cpu_ready_queue, input_buffer.device());
// 插入下一个需要计算的NodeTask
queue->push(
NodeTask(graph_task, next.function, std::move(input_buffer)));
} else {
not_ready.emplace(next.function.get(), std::move(input_buffer));
}
} else {
// The function already has a buffer
auto &input_buffer = not_ready_it->second;
// Accumulates into buffer
const auto opt_next_stream = next.function->stream(c10::DeviceType::CUDA);
input_buffer.add(next.input_nr,
std::move(output),
opt_parent_stream,
opt_next_stream);
if (is_ready) {
auto queue = ready_queue(cpu_ready_queue, input_buffer.device());
// 插入下一个需要计算的NodeTask
queue->push(
NodeTask(graph_task, next.function, std::move(input_buffer)));
not_ready.erase(not_ready_it);
}
}
}
其中,const auto& next = fn.next_edge(i);
就是用来查找下一个节点。
next_edge 代码如下:
const Edge& next_edge(size_t index) const noexcept {
return next_edges_[index];
}
next_edges_ 指向的是前向图中该Node节点的输入节点,所以在反向传播中,就是该节点的输出节点。
4.4.2 唤醒
在 thread_main 之中,有一个 work around。就是:当前工作线程完成 graph_task,但此时,拥有graph_task的线程可能正在pop()上等待休眠。因此,我们需要向所属线程发送一个仿造的函数任务,以唤醒它,这样我们可以退出thread_main。
// Check if we've completed execution.
if (local_graph_task->completed()) {
local_graph_task->mark_as_completed_and_run_post_processing();
auto base_owner = local_graph_task->owner_;
// The current worker thread finish the graph_task, but the owning thread
// of the graph_task might be sleeping on pop() if it does not have work.
// So we need to send a dummy function task to the owning thread just to
// ensure that it's not sleeping, so that we can exit the thread_main.
// If it has work, it might see that graph_task->outstanding_tasks_ == 0
// before it gets to the task, but it's a no-op anyway.
//
// NB: This is not necessary if the current thread is the owning thread.
if (worker_device != base_owner) {
// Synchronize outstanding_tasks_ with queue mutex
std::atomic_thread_fence(std::memory_order_release);
ready_queue_by_index(local_graph_task->cpu_ready_queue_, base_owner)
->push(NodeTask(local_graph_task, nullptr, InputBuffer(0)));
}
}
4.5 工作线程消费
首先,我们可以回忆一下graph_root 的初始化,graph_root 由roots和inputs构建,roots就是最终输出节点的gradient_edge(),比如 [ (MulBackward0实例,0),(PowerBackward0, 0) ]。inputs 如果用户没有指定,就是默认的 tensor(1.)。
auto graph_root = skip_dummy_node ?
roots.at(0).function : // 如果只有一个root,就直接使用root作为 GraphRoot
std::make_shared<GraphRoot>(roots, inputs); // 如果多个root,就构造一个GraphRoot
其次,我们看看如何消费。
当worker线程刚被创建出来的时候,该线程被阻塞在queue->pop(),就是等待生产者往这个queue里插入一个task。当主线程往 ReadyQueue 发送了 NodeTask 实例之后,消费端的工作线程在 thread_main 的 pop 结束阻塞被唤醒。
于是worker线程获取 到了NodeTask。worker线程 然后:
- 通过task.base来访问到这个GraphTask实例。
- 通过 task.fn_ 访问到这个roots实例,也就是该NodeTask需要执行的后向计算方法,比如 MulBackward0。
- 通过task.inputs_ 来访问这个InputBuffer实例,就是 MulBackward0 的输入。
- 后把NodeTask 的 fn_, inputs 传给evaluate_function。进行反向计算。
具体代码如下:
// 工作线程之中如何消费 NodeTask
NodeTask task = local_ready_queue->pop();
if (task.fn_ && !local_graph_task->has_error_.load()) {
AutoGradMode grad_mode(local_graph_task->grad_mode_);
try {
GraphTaskGuard guard(local_graph_task);
NodeGuard ndguard(task.fn_);
// 后向计算
evaluate_function(local_graph_task, task.fn_.get(), task.inputs_, local_graph_task->cpu_ready_queue_);
} catch (std::exception& e) {
thread_on_exception(local_graph_task, task.fn_, e);
}
}
}
下面是生产者和消费者的图例。
- 1)主线程往CPU ReadyQueue放入一个 NodeTask。
- 2)工作线程 1 从 CPU ReadyQueue 取出 NodeTask,开始执行。
- 3)工作线程 1 结束之后,往 device_ready_queues_ 的 某一个 ReadyQueue 插入一个 NodeTask。
- 4)ReadyQueue 对应的 工作线程 2 取出 NodeTask,开始执行。
+--------------+ +-----------------+
| Main Thread | | Worker Thread 1 |
| | 1 +-----------------+ 2 | |
| | push(NodeTask) | | pop(NodeTask) | |
| +-------------------> | CPU ReadyQueue +-----------------------> |
| | | | | |
| | +-----------------+ | |
| | +----------------------+ | |
| | | device_ready_queues_ | | |
| | | | | |
| | | | 3 | |
| | | +-------------+ | push(NodeTask)| |
| | | | ReadyQueue | <------------------------ |
| | | +------+------+ | | |
| | | | | | |
+--------------+ | | | +-----------------+
| +------------------+
| | | +-----------------+
| | | | Worker Thread 2 |
| | | | |
| | | | |
| | | | |
| +-------------+ | +-------------> |
| | ReadyQueue | | pop(NodeTask) | |
| +-------------+ | 4 | |
| | | |
| | | |
| +-------------+ | | |
| | ReadyQueue | | | |
| +-------------+ | | |
| | | |
+----------------------+ +-----------------+
0x05 InputBuffer
因为有的节点在反向计算时候,有多个输入,所以在计算梯度的时候, grad_fn 的 输入可能从 很多条路径上累积过来,InputBuffer 就是用来累积 grad_fn 的输入。
struct InputBuffer {
// size 表示有几个输入
explicit InputBuffer(size_t size)
: buffer(size) {}
InputBuffer(const InputBuffer& other) = delete;
InputBuffer(InputBuffer&& other) = default;
explicit InputBuffer(variable_list&& inputs): buffer(std::move(inputs)) {};
InputBuffer& operator=(InputBuffer&& other) = default;
// Accumulates the variable at a specified index.
// The optional CUDA streams determine which stream the accumulation
// is run on and how the addition is synchronized.
void add(size_t pos,
Variable&& var,
const c10::optional<c10::Stream>& opt_producer_stream,
const c10::optional<c10::Stream>& opt_consumer_stream);
at::Device device() const;
Variable operator[](size_t pos) { return buffer[pos]; }
// Returns the inputs as a list of variables. Destroys given InputBuffer.
static std::vector<Variable> variables(InputBuffer&& g);
private:
// Variables, pair 中的 int 代表 version
std::vector<Variable> buffer;
};
如何通过 input_buffer.device() 来得到对应的 device?就是遍历 input_buffer 中的 variables,其中第一个设备非cpu的variable的device将成为input_buffer的device,否则设备就是CPU。
auto InputBuffer::device() const -> at::Device {
// Since we pick the first non-CPU tensor, this won't work with
// mixed device-type operations (e.g., an op that is both CUDA
// and XLA). This is *incredibly* unlikely, so we don't worry
// about it.
// 遍历buffer,获取第一个非CPU张量,然后得到他的device
for (auto& var : buffer) {
if (var.defined()) {
auto device = var.device();
if (device.type() != at::kCPU) {
return device;
}
}
}
// Only report to the CPU thread if there really were no tensors
// from other devices.
return at::kCPU;
}
InputBuffer 对应的部分方法如下,有添加参数,也有累积参数。
static void accumulate(std::vector<Variable>& buffer,
const size_t pos,
Variable&& var) {
TORCH_INTERNAL_ASSERT(pos < buffer.size());
auto& old_var = buffer[pos];
// ATen doesn't route sparse additions correctly...
// do dense + sparse in-place if possible
if (old_var.is_sparse()) {
//storage use_count is a big hammer, but for anything lighter there's an adversarial example with unexpected inplace modification
if (!var.is_sparse() && var.is_contiguous() && var.storage().use_count() == 1) {
buffer[pos] = var.add_(old_var);
} else {
buffer[pos] = var + old_var;
}
} else {
if (var.is_sparse() && !old_var.is_sparse() && old_var.is_contiguous() && old_var.storage().use_count() == 1) {
buffer[pos] = old_var.add_(var);
} else {
buffer[pos] = old_var + var;
}
}
}
void InputBuffer::add(size_t pos,
Variable&& var,
const c10::optional<c10::Stream>& opt_producer_stream,
const c10::optional<c10::Stream>& opt_consumer_stream) {
TORCH_INTERNAL_ASSERT(pos < buffer.size());
if (!var.defined()) {
return;
}
// Switches to accumulate device
// The device (and stream) chosen for accumulation is:
// (1) var is not a CUDA variable. Accumulation happens on var's device.
// (2) var is a CUDA variable and it, the consumer, and the producer share the same device:
// (2a) Uses the consumer's stream as the accumulation stream
// (2b) Syncs the accumulation stream with the producer's stream (if different)
// (2c) Accumulates.
// (3) var is a CUDA variable and it shares a device with the consumer but not the producer:
// (3a) Uses the consumer's stream as the accumulation stream
// (3b) Syncs the accumulation stream with the consumer device's default stream
// (3c) Accumulates.
// (4) var is a CUDA variable and it shares a device with the producer but not the consumer:
// (4a) Uses the producer device's default stream as the accumulation stream
// (4b) Syncs the accumulation stream with the the producer's stream
// (4c) Accumulates.
// (5) var is a CUDA variable and it does not share a device with the consumer or producer.
// Accumulation happens on the var device's default stream.
c10::optional<c10::Stream> opt_accumulate_stream = c10::nullopt;
if (device_of(var)->is_cuda()) {
const auto on_producer = opt_producer_stream
&& device_of(var) == opt_producer_stream->device();
const auto on_consumer = opt_consumer_stream
&& device_of(var) == opt_consumer_stream->device();
if (on_producer && on_consumer) {
// (2a)
opt_accumulate_stream = opt_consumer_stream;
if (opt_accumulate_stream != opt_producer_stream) {
// (2b)
auto event = c10::Event{c10::DeviceType::CUDA};
event.record(*opt_producer_stream);
opt_accumulate_stream->wait(event);
}
} else {
c10::optional<c10::Stream> opt_sync_stream = c10::nullopt;
const auto guard = c10::impl::VirtualGuardImpl{c10::DeviceType::CUDA};
if (on_consumer && !on_producer) {
// (3a)
opt_accumulate_stream = opt_consumer_stream;
opt_sync_stream = guard.getDefaultStream(opt_consumer_stream->device());
} else if (on_producer && !on_consumer) {
// (4a)
opt_accumulate_stream = guard.getDefaultStream(opt_producer_stream->device());
opt_sync_stream = opt_producer_stream;
} else {
// (5)
opt_accumulate_stream = guard.getDefaultStream(*device_of(var));
}
if (opt_sync_stream && (opt_accumulate_stream != opt_sync_stream)) {
// (3b), (4b)
c10::OptionalDeviceGuard device_guard{opt_sync_stream->device()};
auto event = c10::Event{c10::DeviceType::CUDA};
event.record(*opt_sync_stream);
opt_accumulate_stream->wait(event);
}
}
}
auto& old_var = buffer[pos];
if (!old_var.defined()) {
buffer[pos] = std::move(var);
} else {
if (opt_accumulate_stream) {
c10::OptionalStreamGuard stream_guard{opt_accumulate_stream};
accumulate(buffer, pos, std::move(var));
} else {
// (1) non-CUDA variable
// Accumulation happens on variable's device
c10::OptionalDeviceGuard device_guard{device_of(var)};
accumulate(buffer, pos, std::move(var));
}
}
}
auto InputBuffer::variables(InputBuffer&& g) -> std::vector<Variable> {
std::vector<Variable> result = std::move(g.buffer);
return result;
}
0x06 ReadyQueue
6.1 定义
ReadyQueue 用来在主线程和worker线程之间、以及worker线程和worker线程之间传输任务(NodeTask对象)。为什么要传递 NodeTask?是因为NodeTask 包含了求导函数,逐一运行NodeTask 就是在反向计算图路径上逐一运行求导函数,最后往输出节点输出最终梯度。ReadyQueue就指定了worker线程要执行的工作流。
其定义如下:
struct ReadyQueue {
private:
// Returns true when t2 should be (weakly) BEFORE t1 in the queue.
// Shutdown tasks are first and then empty NodeTask are next.
struct CompareNodeTaskTime {
bool operator()(NodeTask const & t1, NodeTask const & t2) {
// NOLINTNEXTLINE(bugprone-branch-clone)
if (t2.isShutdownTask_) {
return true;
} else if (!t1.fn_ || t1.isShutdownTask_) {
return false;
} else if (!t2.fn_) {
return true;
} else if (t1.getReentrantDepth() == t2.getReentrantDepth()) {
return t1.fn_->sequence_nr() < t2.fn_->sequence_nr();
} else {
return t1.getReentrantDepth() < t2.getReentrantDepth();
}
}
};
// To notify threads waiting on the ReadyQueue of available tasks on the heap_
std::condition_variable not_empty_;
// To protect read and writes to heap_
mutable std::mutex mutex_;
std::priority_queue<NodeTask, std::vector<NodeTask>, CompareNodeTaskTime> heap_;
public:
// incrementOutstandingTasks indicates whether or not we should increment
// 'outstanding_tasks_' for the associated GraphTask. This should mostly
// always be true and is only set false in certain cases (see docs for
// DistEngine.execute_graph_task_until_ready_queue_empty)
void push(NodeTask item, bool incrementOutstandingTasks = true);
void pushShutdownTask();
NodeTask pop();
bool empty() const;
size_t size() const;
};
ReadyQueue 主要成员函数/成员变量如下:
std::condition_variable not_empty_
其作用是在线程之间同步。- Push 是生成者行为,使用
not_empty_.notify_one()
来通知消费者,这样就可以解锁一个消费者。 - Pop 是消费者行为,使用
not_empty_.wait(lock, [this]{ return !heap_.empty(); })
来阻塞等待生产。 std::priority_queue heap_
,使用 CompareNodeTaskTime 来做比较。- 每次 pop 时会取出 CompareNodeTaskTime 最小的 NodeTask。
- CompareNodeTaskTime 依据 ReentrantDepth 和 sequence_nr 做比较,哪一个小就消费哪一个。因此消费的顺序不等同于生产的顺序,这里生产的意思是往queue之中插入NodeTask。
auto ReadyQueue::push(NodeTask item, bool incrementOutstandingTasks) -> void {
{
// Lock mutex for writing to heap_
std::lock_guard<std::mutex> lock(mutex_);
if (incrementOutstandingTasks) {
std::shared_ptr<GraphTask> graph_task = item.base_.lock();
++graph_task->outstanding_tasks_;
}
heap_.push(std::move(item));
}
not_empty_.notify_one();
}
auto ReadyQueue::pushShutdownTask() -> void {
{
std::lock_guard<std::mutex> lock(mutex_);
heap_.push(NodeTask({}, nullptr, InputBuffer(0), true));
}
not_empty_.notify_one();
}
size_t ReadyQueue::size() const {
// Lock mutex for accesses to heap_
std::unique_lock<std::mutex> lock(mutex_);
return heap_.size();
}
auto ReadyQueue::pop() -> NodeTask {
// Lock mutex for accesses to heap_
std::unique_lock<std::mutex> lock(mutex_);
not_empty_.wait(lock, [this]{ return !heap_.empty(); });
auto task = std::move(const_cast<NodeTask&>(heap_.top())); heap_.pop();
return task;
}
bool ReadyQueue::empty() const {
// Lock mutex for accesses to heap_
std::unique_lock<std::mutex> lock(mutex_);
return heap_.empty();
}
6.2 设备Queue 数量
在引擎之中,线程数量和ReadyQueue 的数量是由据设备的数量来决定的。有多少个设备,就启动多少个工作线程,也生成与线程一一对应的ReadyQueue。
所以,引擎有如下成员变量,使用 vector 来统一管理 queue。
// Safe to read device_ready_queues_ without synchronization after initialization
std::vector<std::shared_ptr<ReadyQueue>> device_ready_queues_;
生成queue具体如下面的代码:
auto Engine::start_device_threads() -> void {
// See Note [Allocating GPUs to autograd threads]
c10::DeviceIndex num_devices = 0;
// 得到设备数量
for (const auto& impl_atomic : c10::impl::device_guard_impl_registry) {
auto* impl = impl_atomic.load();
if (impl) {
num_devices = std::max(num_devices, impl->deviceCount());
}
}
// 确定queue数量,并且生成queue
// allocate one thread for every GPU device (but colocate GPUs of different
// types), and pre-allocate the device_ready_queues_ to ensure safe reading on it.
device_ready_queues_ = std::vector<std::shared_ptr<ReadyQueue>>(num_devices);
for (auto& queue : device_ready_queues_) {
// NOLINTNEXTLINE(modernize-make-shared)
queue.reset(new ReadyQueue());
}
// 生成线程
thread_pool_shared_ = std::make_shared<ThreadPoolShared>();
for (int i = 0; i < num_devices; ++i) {
std::thread t(&Engine::thread_init, this, i, device_ready_queues_[i], true);
t.detach();
}
// Wait for the threads to start
{
std::unique_lock<std::mutex> lk(non_reentrant_device_thread_mutex_);
while(non_reentrant_device_thread_count_.load() != static_cast<uint32_t>(num_devices)) {
non_reentrant_device_thread_condvar_.wait(lk);
}
}
}
因为是使用 vector 来管理queue,所以可以使用设备号(device index)去vector里得到每个device专属的ReadyQueue。
auto Engine::ready_queue_by_index(std::shared_ptr<ReadyQueue> cpu_ready_queue, int device_index) -> std::shared_ptr<ReadyQueue> {
if (device_index == CPU_DEVICE) {
// return the cpu ready queue passed in
TORCH_INTERNAL_ASSERT(cpu_ready_queue);
return cpu_ready_queue;
} else {
// Static cast is ok here as the number of device should never overflow an int.
TORCH_INTERNAL_ASSERT(0 <= device_index && device_index < static_cast<int>(device_ready_queues_.size()));
// See Note [Allocating GPUs to autograd threads]
// NB: This function would become obsolete if we truly allocated a CPU thread
// per device, rather than colocate.
return device_ready_queues_.at(device_index);
}
}
6.3 线程角度看ReadyQueue
现在,让我们从线程角度来看看ReadyQueue。
6.3.1 工作线程
每个autogard 工作线程都与一个就绪队列相关联,该队列指定该线程要执行的工作流,这个队列定义如下。
// Every autograd worker thread is associated with a ready queue, which specifies
// the stream of work of this thread to do. This shared_ptr is a thread_local
// pointer to each thread's ready_queue, and it should be initialized via the
// Engine::init_local_ready_queue() call in each corresponding thread before execution.
//
// The CUDA, XLA threads are shared among all invocations of backwards via
// device_ready_queues_, while CPU threads are dedicated to processing CPU work for
// the backward they invoked. So any given graph task maintains its own cpu_ready_queue_
// where you should send work for it to be done
//
// For reentrant backward calls, if we spawn new thread from the current thread
// because we reached the maximum depth, the new thread will just reuse the same
// ReadyQueue with the parent thread for performance improvement.
// see Note [Reentrant backwards] for more details.
static thread_local std::shared_ptr<ReadyQueue> local_ready_queue = nullptr;
这个shared_ptr是一个thread_local指针,其指向每个线程的ready_queue,在执行之前,应该通过每个对应线程中的 Engine::init_local_ready_queue() 调用对其进行初始化。
void Engine::init_local_ready_queue(std::shared_ptr<ReadyQueue> ready_queue) {
if (ready_queue) {
// if ready_queue provided in the caller, use the caller's ready_queue to initialize local_ready_queue
local_ready_queue = std::move(ready_queue);
} else if (!local_ready_queue){
// otherwise if local_ready_queue not allocated, allocate a new ready_queue
local_ready_queue = std::make_shared<ReadyQueue>();
}
}
对于可重入的向后调用,如果由于达到最大深度而从当前线程生成新线程,则新线程将与父线程重用相同的ReadyQueue以提高性能。
对于工作线程,其对应的 ReadyQueue 是 device_ready_queues_ 之中对应的 queue,比如下面是用 std::thread t(&Engine::thread_init, this, i, device_ready_queues_[i], true) 来初始化。
auto Engine::start_device_threads() -> void {
// See Note [Allocating GPUs to autograd threads]
c10::DeviceIndex num_devices = 0;
for (const auto& impl_atomic : c10::impl::device_guard_impl_registry) {
auto* impl = impl_atomic.load();
if (impl) {
num_devices = std::max(num_devices, impl->deviceCount());
}
}
// allocate one thread for every GPU device (but colocate GPUs of different
// types), and pre-allocate the device_ready_queues_ to ensure safe reading on it.
device_ready_queues_ = std::vector<std::shared_ptr<ReadyQueue>>(num_devices);
for (auto& queue : device_ready_queues_) {
// NOLINTNEXTLINE(modernize-make-shared)
queue.reset(new ReadyQueue());
}
thread_pool_shared_ = std::make_shared<ThreadPoolShared>();
for (int i = 0; i < num_devices; ++i) {
std::thread t(&Engine::thread_init, this, i, device_ready_queues_[i], true);
t.detach();
}
// Wait for the threads to start
{
std::unique_lock<std::mutex> lk(non_reentrant_device_thread_mutex_);
while(non_reentrant_device_thread_count_.load() != static_cast<uint32_t>(num_devices)) {
non_reentrant_device_thread_condvar_.wait(lk);
}
}
}
6.3.2 主线程
对于主线程,则调用 init_local_ready_queue() 来 初始化local ready_queue。
因为 init_local_ready_queue 没有传入参数,所以新生成一个queue。
void Engine::init_local_ready_queue(std::shared_ptr<ReadyQueue> ready_queue) {
if (ready_queue) {
// if ready_queue provided in the caller, use the caller's ready_queue to initialize local_ready_queue
local_ready_queue = std::move(ready_queue);
} else if (!local_ready_queue){
// otherwise if local_ready_queue not allocated, allocate a new ready_queue
local_ready_queue = std::make_shared<ReadyQueue>();
}
}
这就是 CPU queue。我们把 CPU queue 和工作线程的queue做比较。
- 设备 ReadyQueue 的数目 与 worker线程数目相同,每个worker有一个对应的 ReadyQueue。CUDA、XLA线程在所有反向传播调用之间通过
device_ready_queues_
进行信息共享。 - 而CPU线程专用于处理它们调用的反向传播相关CPU工作。因此,任何给定的graph任务都会维护自己的
cpu_ready_queue_
,用户应该向其发送要完成的工作。
CPU queue 就是GraphTask 的成员变量 cpu_ready_queue_。
// CPU threads are dedicated to processing CPU work for the backward they invoked.
// So any given graph task maintains its own cpu_ready_queue_ where you should send
// work for it to be done. We memoize the cpu_ready_queue_ per GraphTask so that
// we know which ready queue we should push to if we are on device thread (i.e. GPU)
// and but next NodeTask should be run on CPU.
std::shared_ptr<ReadyQueue> cpu_ready_queue_;
注意,CPU就绪队列为每个GraphTask独有,但CUDA设备就绪队列在所有GraphTask中共享。
所以,引擎之中就绪队列数目是:设备数目 + GraphTask 数目。
我们完善一下之前的图例,加入了GraphTask 和 Engine 信息,具体如下图:
- 1)主线程往CPU ReadyQueue放入一个 NodeTask。
- 2)工作线程 1 从 CPU ReadyQueue 取出 NodeTask,开始执行。
- 3)工作线程 1 结束之后,往 device_ready_queues_ 的 某一个 ReadyQueue 插入一个 NodeTask。
- 4)ReadyQueue 对应的 工作线程 2 取出 NodeTask,开始执行。
+-------------------------+
| GraphTask |
| |
| cpu_ready_queue_ |
| + |
| | |
+-------------------------+
|
+--------------+ | +-----------------+
| Main Thread | v | Worker Thread 1 |
| | 1 +-------+---------+ 2 | |
| | push(NodeTask) | | pop(NodeTask) | |
| +-------------------> | CPU ReadyQueue +-----------------------> |
| | | | | |
| | +-----------------+ | |
| | +----------------------+ | |
| | | Device ReadyQueues | | |
| | | | | |
| | | | 3 | |
| | | +-------------+ | push(NodeTask)| |
| | | | ReadyQueue 1| <-----------------------+ |
| | | +------+------+ | | |
| | | | | | |
+--------------+ | | | +-----------------+
| +------------------+
| | | +-----------------+
+------------------------+ | . | | | Worker Thread 2 |
| Engine | | . | | | |
| | | . | | | |
| | | | | | |
| device_ready_queues_ +---> | +-------------+ | +-------------> |
| | | | ReadyQueue 2| | pop(NodeTask) | |
| | | +-------------+ | 4 | |
+------------------------+ | | | |
| | | |
| +-------------+ | | |
| | ReadyQueue 3| | | |
| +-------------+ | | |
| | | |
+----------------------+ +-----------------+
至此,静态结构和基础类介绍完毕,下一篇我们介绍动态逻辑。
0xFF 参考
https://www.zhihu.com/column/gemfield
pytorch笔记(计算图+autograd)-Node(1)
PyTorch Internals 5:Autograd的实现
A GENTLE INTRODUCTION TO TORCH.AUTOGRAD