[源码解析]深度学习利器之自动微分(3) --- 示例解读

[源码解析]深度学习利器之自动微分(3) --- 示例解读

0x00 摘要

本文从 PyTorch 两篇官方文档开始为大家解读两个示例。本文不会逐句翻译,而是选取重点并且试图加入自己的理解。

我们在前两篇文章学习了自动微分的基本概念,从本文开始,我们继续分析 PyTorch 如何实现自动微分。因为涉及内容太多太复杂,所以计划使用 2~3篇来介绍前向传播如何实现,用 3 ~ 4 篇来介绍后向传播如何实现。

系列前两篇连接如下:

深度学习利器之自动微分(1)

深度学习利器之自动微分(2)

0x01 概述

在训练神经网络时,最常用的算法是 反向传播。在该算法中根据损失函数相对于给定参数的梯度来对参数(模型权重)进行调整。为了计算这些梯度,PyTorch 实现了一个名为 torch.autograd的内置反向自动微分引擎。它支持任何计算图的梯度自动计算。

1.1 编码历史

从概念上讲,autograd 记录了一个计算图。在创建张量时,如果设置 requires_grad 为Ture,那么 Pytorch 就知道需要对该张量进行自动求导。于是PyTorch会记录对该张量的每一步操作历史,从而生成一个概念上的有向无环图,该无环图的叶子节点是模型的输入张量,其根为模型的输出张量。用户不需要对图的所有执行路径进行编码,因为用户运行的就是用户后来想微分的。通过从根到叶跟踪此图形,用户可以使用链式求导规则来自动计算梯度。

在内部实现上看,autograd 将此图表示为一个“Function” 或者说是"Node" 对象(真正的表达式)的图,该图可以使用apply方法来进行求值。

1.2 如何应用

在前向传播计算时,autograd做如下操作:

  • 运行请求的操作以计算结果张量。
  • 建立一个计算梯度的DAG图,在DAG图中维护所有已执行操作(包括操作的梯度函数以及由此产生的新张量)的记录 。每个tensor梯度计算的具体方法存放于tensor节点的grad_fn属性中。

当向前传播完成之后,我们通过在在 DAG 根上调用.backward() 来执行后向传播,autograd会做如下操作:

  • 利用.grad_fn计算每个张量的梯度,并且依据此构建出包含梯度计算方法的反向传播计算图。
  • 将梯度累积在各自的张量.grad属性中,并且使用链式法则,一直传播到叶张量。
  • 每次迭代都会重新创建计算图,这使得我们可以使用Python代码在每次迭代中更改计算图的形状和大小。

需要注意是,PyTorch 中 的DAG 是动态的,每次 .backward()调用后,autograd 开始填充新计算图,该图是从头开始重新创建。这使得我们可以使用Python代码在每次迭代中更改计算图的形状和大小。

0x02 示例

下面我们通过两个例子来进行解读,之所以使用两个例子,因为均来自于PyTorch 官方文档。

2.2 实例解读 1

我们首先使用 https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html 来进行演示和解读。

2.2.1 代码

示例代码如下:

import torch

a = torch.tensor(2., requires_grad=True)
b = torch.tensor(6., requires_grad=True)
O = 3*a**3
P = b**2
Q = O - P
external_grad = torch.tensor(1.)
Q.backward(gradient=external_grad)
print(a.grad)
print(b.grad)

print("=========== grad")

a = torch.tensor(2., requires_grad=True)
b = torch.tensor(6., requires_grad=True)
Q = 3*a**3 - b**2
grads = torch.autograd.grad(Q, [a, b])
print(grads[0])
print(grads[1])

print(Q.grad_fn.next_functions)
print(O.grad_fn.next_functions)
print(P.grad_fn.next_functions)
print(a.grad_fn)
print(b.grad_fn)

输出为:

tensor(36.)
tensor(-12.)
=========== grad
tensor(36.)
tensor(-12.)

((<MulBackward0 object at 0x000001374DE6C308>, 0), (<PowBackward0 object at 0x000001374DE6C288>, 0))
((<PowBackward0 object at 0x000001374DE6C288>, 0), (None, 0))
((<AccumulateGrad object at 0x000001374DE6C6C8>, 0),)
None
None

这里的Q运算方式如下:

\[Q = 3a^3 - b^2 \]

因此Q对a, b 的求导如下:

\[\frac{∂Q}{∂a} = 9a^2 \\\frac{∂Q}{∂b} = -2b \]

2.2.2 分析

动态图是在前向传播的时候建立。前向传播时候,Q是最终的输出,但是在反向传播的时候,Q 却是计算的最初输入,就是反向传播图的Root。

示例中,对应的张量是:

  • a 是 2,b 是 6, Q 是 tensor(-12., grad_fn=<SubBackward0>)

对应的积分是:

  • Q对于 a 的积分是:\(\frac{∂Q}{∂a} = 9a^2\) = 36。
  • Q对于b的积分是 \(\frac{∂Q}{∂b} = -2b\) = -12。

当我们调用.backward()时,backward()只是通过将其参数传递给已经生成的反向图来计算梯度。autograd 计算这些梯度并将它们存储在各自的张量.grad属性中。

我们需要显式地给Q.backward()传入一个gradient参数,因为它是一个向量。 gradient是与 形状相同的张量Q,它表示 Q 本身的梯度,即

\[\frac{∂Q}{∂Q} = 1 \]

等效地,我们也可以将 Q 聚合为一个标量并隐式地向后调用,例如Q.sum().backward()

external_grad = torch.tensor([1., 1.])
Q.backward(gradient=external_grad)

下面是我们示例中 DAG 的可视化表示。在图中,箭头指向前向传递的方向。节点代表前向传递中每个操作的后向函数。蓝色的叶子节点代表我们的叶子张量ab

2.3 实例解读 2

这次以https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html为例子说明。

2.3.1 示例代码

考虑最简单的一层神经网络,具有输入x、参数wb,以及一些损失函数。它可以通过以下方式在 PyTorch 中定义:

import torch

x = torch.ones(5)  # input tensor
y = torch.zeros(3)  # expected output
w = torch.randn(5, 3, requires_grad=True)
b = torch.randn(3, requires_grad=True)
z = torch.matmul(x, w)+b
loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)

2.3.2 张量、函数和计算图

上述代码定义了以下计算图

图片来源是:https://pytorch.org/tutorials/_images/comp-graph.png

在这个网络中,wb是我们需要优化的参数。因此,我们需要计算关于这些变量的损失函数的梯度。为了做到这一点,我们设置了这些张量的requires_grad属性。

注意,您可以在创建张量时设置requires_grad的值,也可以稍后使用x.requires_grad_(True)方法设置。

我们应用于张量来构建计算图的函数实际上是一个Function类的对象。该对象知道如何在前向计算函数,以及如何在反向传播步骤中计算其导数。对反向传播函数的引用存储在grad_fn张量的属性中。

print('Gradient function for z =', z.grad_fn)
print('Gradient function for loss =', loss.grad_fn)

输出如下:

Gradient function for z = <AddBackward0 object at 0x7f4dbd4d3080>
Gradient function for loss = <BinaryCrossEntropyWithLogitsBackward object at 0x7f4dbd4d3080>

2.3.3 计算梯度

为了优化神经网络中参数的权重,我们需要计算损失函数关于参数的导数,即我们需要在限定一些 xy时候得到 $ \frac{\partial loss}{\partial w}$ 和 $\frac{\partial loss}{\partial b} $ 。为了计算这些导数,我们调用 loss.backward(),然后从w.gradb.grad 之中获得数值:

loss.backward()
print(w.grad)
print(b.grad)

得出:

tensor([[0.1881, 0.1876, 0.0229],
        [0.1881, 0.1876, 0.0229],
        [0.1881, 0.1876, 0.0229],
        [0.1881, 0.1876, 0.0229],
        [0.1881, 0.1876, 0.0229]])
tensor([0.1881, 0.1876, 0.0229])

注意

  • 我们只能获取在计算图叶子节点的requires_grad属性设置为True时候得到该节点的grad属性。我们没法得到们图中的所有其他节点的梯度。
  • 出于性能原因,我们只能在给定的计算图之上使用backward执行一次梯度计算 。如果我们需要在同一个图上多次调用backward,则需要在backward调用时候设置 retain_graph=True

2.3.4 禁用梯度跟踪

默认情况下,所有设置requires_grad=True 的张量都会跟踪其计算历史并支持梯度计算。但是,有些情况下我们不需要这样做,例如,当我们已经训练了模型并且只想将其应用于某些输入数据时,即我们只想通过网络进行前向计算,这时候我们可以通过用torch.no_grad()块包围我们的计算代码以停止跟踪计算 :

z = torch.matmul(x, w)+b
print(z.requires_grad)

with torch.no_grad():
    z = torch.matmul(x, w)+b
print(z.requires_grad)

输出:

True
False

实现相同结果的另一种方法是在张量上使用detach()方法:

z = torch.matmul(x, w)+b
z_det = z.detach()
print(z_det.requires_grad)

输出:

False

您可能想要禁用梯度跟踪的原因有:

  • 将神经网络中的某些参数标记为冻结参数。这是微调预训练网络的一个非常常见的场景。
  • 在仅进行前向传递时加快计算速度,因为对不跟踪梯度的张量进行计算会更有效。

0x03 逻辑关系

如果从计算图角度来看前向计算的过程,就是在构建图和执行图。"构建图"描述的是节点运算之间的关系。"执行图"则是在会话中执行这个运算关系,就是张量在计算图之中进行前向传播的过程。

前向计算依赖一些基础类,在具体分析前向传播之前,我们先要看看这些基础类之间的逻辑关系。从DAG角度来分析 PyTorch 这个系统,其具体逻辑如下。

  • 图表示计算任务。PyTorch把计算都当作是一种有向无环图,或者说是计算图,但这是一种虚拟的图,代码中没有真实的数据结构
  • 计算图由节点(Node)边(Edge)组成。
  • 节点(Node)代表了运算操作。
    • 一个节点通过边来获得 0 个或多个 Tensor,节点执行计算之后会产生 0 个或多个 Tensor
    • 节点的成员变量 next_functions 是一个 tuple 列表,此列表就代表本节点要输出到哪些其他 Function。列表个数就是这个 grad_fn 的 Edge 数目,列表之中每一个 tuple 对应一条 Edge 信息,内容就是 (Edge.function, Edge.input_nr)。
  • 边(Edge)就是运算操作之间的流向关系。
    • Edge.function :表示此 Edge 需要输出到哪一个其他 Function。
    • Edge.input_nr :指定本 Edge 是 Function 的第几个输入。
  • 使用张量( Tensor) 表示数据,就是在节点间流动的数据,如果没有数据,计算图就没有任何意义。

具体可以参见下图:

+---------------------+              +----------------------+
| SubBackward0        |              | PowBackward0         |
|                     |      Edge    |                      |  Edge
|   next_functions  +-----+--------> |     next_functions +----------> ...
|                     |   |          |                      |
+---------------------+   |          +----------------------+
                          |
                          |
                          |          +----------------------+
                          |  Edge    | MulBackward0         |
                          +--------> |                      |  Edge
                                     |     next_functions +----------> ...
                                     |                      |
                                     +----------------------+

至此,示例解析结束,我们下一篇介绍PyTorch 微分引擎相关的一些基础类。

0xFF 参考

https://github.com/KeithYin/read-pytorch-source-code/

pytorch学习笔记(十三):backward过程的底层实现解析

PyTorch的初始化

pytorch的自动求导机制 - 计算图的建立

How autograd encodes the history

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

pytorch笔记(计算图+autograd)-Node(1)

详解Pytorch中的网络构造

PyTorch的优化器

PyTorch的分布式

PyTorch的Tensor(下)

PyTorch的Tensor(中)

PyTorch的Tensor(上)

PyTorch的动态图(下)

PyTorch的动态图(上)

计算图——用Pytorch解释李宏毅老师PPT中的实例

如何使用pytorch自动求梯度

PyTorch自动求导(Autograd)原理解析

pytorch自动求导Autograd系列教程(一)

PyTorch核心开发者亲自揭秘其内部机制

PyTorch自动微分基本原理

https://towardsdatascience.com/pytorch-autograd-understanding-the-heart-of-pytorchs-magic-2686cd94ec95

posted @ 2021-10-16 10:01  罗西的思考  阅读(1952)  评论(0编辑  收藏  举报