[源码解析]Oozie来龙去脉之提交任务
[源码解析]Oozie来龙去脉之提交任务
0x00 摘要
Oozie是由Cloudera公司贡献给Apache的基于工作流引擎的开源框架,是Hadoop平台的开源的工作流调度引擎,用来管理Hadoop作业。本文是系列的第一篇,介绍Oozie的任务提交阶段。
0x01 问题
我们从需求逆推实现,即考虑如果我们从无到有实现工作流引擎,我们需要实现哪些部分?从而我们可以提出一系列问题从而去Oozie中探寻。
作为工作流引擎需要实现哪些部分?大致想了想,觉得需要有:
- 任务提交
- 任务持久化
- 任务委托给某一个执行器执行
- 任务调度
- 任务回调,即任务被执行器完成后通知工作流引擎
- 支持不同任务(同步,异步)
- 控制任务之间逻辑关系(跳转,等待...)
- 状态监控,监控任务进度
- ......
因为篇幅和精力所限,我们无法研究所有源码,回答所有问题,所以我们先整理出部分问题,在后面Oozie源码分析中一一解答:
- Oozie分为几个模块?
- 每个模块功能是什么?
- Oozie如何提交任务?
- 任务提交到什么地方?如何持久化?
- Oozie任务有同步异步之分吗?
- Oozie如何处理同步任务?
- Oozie如何处理异步任务?
- 任务的控制流节点(Control Flow Nodes)和动作节点(Action Nodes)之间如何跳转?
- Oozie都支持什么类型的任务?Shell?Java? Hive?
- Oozie如何同Yarn交互?
- Oozie如何知道Yarn任务完成?
0x02 Oozie 基本概念
2.1 组件
Oozie由Oozie client和Oozie Server两个组件构成,Oozie Server是运行于Java Servlet容器(Tomcat)中的web应用程序。Oozie client用于给Oozie Server提及任务,Oozie client 提交任务的途径是HTTP请求。
实际上Oozie Server就相当于Hadoop的一个客户端,当用户需要执行多个关联的MR任务时,只需要将MR执行顺序写入workflow.xml,然后使用Oozie Server提交本次任务,Oozie Server会托管此任务流。
Oozie Server 具体操作的是workflow,即Oozie主要维护workflow的执行 / workflow内部Action的串联和跳转。
具体Action的执行是由Yarn去执行,Yarn会把Action分配给有充足资源的节点执行。Action是异步执行,所以Action结束时候会通过回调方式通知Oozie执行结果,Oozie也会采用轮询方式去获取Action结果(为了提高可靠性)。
大致提交流程如下:
Oozie client ------> Oozie Server -------> Yarn ------> Hadoop
2.2 特点
Oozie特点如下:
- Oozie不是仅用来配置多个MR工作流的,它可以是各种程序夹杂在一起的工作流,比如执行一个MR1后,接着执行一个java脚本,再执行一个shell脚本,接着是Hive脚本,然后又是Pig脚本,最后又执行了一个MR2,使用Oozie可以轻松完成这种多样的工作流。使用Oozie时,若前一个任务执行失败,后一个任务将不会被调度。
- Oozie定义了控制流节点(Control Flow Nodes)和动作节点(Action Nodes),其中控制流节点定义了流程的开始和结束,以及控制流程的执行路径(Execution Path),如decision,fork,join等;而动作节点包括Haoop map-reduce hadoop文件系统,Pig,SSH,HTTP,eMail和Oozie子流程。
- Oozie以action为基本单位,可以将多个action构成一个DAG图的模式运行。
- Oozie工作流必须是一个有向无环图,实际上Oozie就相当于Hadoop的一个客户端,当用户需要执行多个关联的MR任务时,只需要将MR执行顺序写入workflow.xml,然后使用Oozie提交本次任务,Oozie会托管此任务流。
2.3 功能模块
Oozie主要由以下功能模块构成:
- workflow(工作流):该组件用于定义和执行一个特定顺序的mapreduce,hive和pig作业。由我们需要处理的每个工作组成,进行需求的流式处理。
- Coordinator(协调器):可将多个工作流协调成一个工作流来进行处理。多个workflow可以组成一个coordinator,可以把前几个workflow的输出作为后 一个workflow的输入,也可以定义workflow的触发条件,来做定时触发。
- Bundle Job:绑定多个coordinator,一起提交或触发所有coordinator,是对一堆coordinator的抽象。
- Oozie SLA(服务器等级协定):该组件支持workflow应用程序执行过程的记录跟踪。
我们就从无到有,看看一个Workflow从提交到最后是如何运行的,假设这个workflow开始后,进入一个hive action,这个hive本身配置的是由tez引擎执行 。下面是代码简化版。
<workflow-app xmlns="uri:oozie:workflow:0.5" name="hive-wf">
<start to="hive-node"/>
<action name="hive-node">
<hive xmlns="uri:oozie:hive-action:0.5">
<script>hive.sql</script>
</hive>
<ok to="end"/>
<error to="fail"/>
</action>
<kill name="fail">
<message>Hive failed, error message</message>
</kill>
<end name="end"/>
</workflow-app>
0x03 Oozie client
Oozie Client是用户用来提交任务给Oozie Server的途径,其可以启动任务,停止任务,提交任务,开始任务,查看任务执行情况。比如启动任务如下:
oozie job -oozie oozie_url -config job.properties_address -run
3.1 程序入口
既然有启动脚本,我们就直接去里面探寻程序入口。
${JAVA_BIN} ${OOZIE_CLIENT_OPTS} -cp ${OOZIECPPATH} org.apache.oozie.cli.OozieCLI "${@}"
这就看到了Client 的入口类,我们去看看。
public class OozieCLI {
public static void main(String[] args) {
if (!System.getProperties().containsKey(AuthOozieClient.USE_AUTH_TOKEN_CACHE_SYS_PROP)) {
System.setProperty(AuthOozieClient.USE_AUTH_TOKEN_CACHE_SYS_PROP, "true");
}
System.exit(new OozieCLI().run(args));
}
}
我们可以看到,经过验证之后,程序直接从main函数进入到了run函数。
public class OozieCLI {
public synchronized int run(String[] args) {
final CLIParser parser = getCLIParser();
try {
final CLIParser.Command command = parser.parse(args);
String doAsUser = command.getCommandLine().getOptionValue(DO_AS_OPTION);
if (doAsUser != null) {
OozieClient.doAs(doAsUser, new Callable<Void>() {
@Override
public Void call() throws Exception {
processCommand(parser, command);
return null;
}
});
}
else {
processCommand(parser, command);
}
return 0;
}
}
}
看来主要的内容是在这个processCommand里面,其会根据命令调用相应的命令方法。通过command.getName()
我们可以清楚的知道Oozie目前支持什么种类的任务,比如 JOB_CMD,JOBS_CMD,PIG_CMD,SQOOP_CMD,MR_CMD。
public void processCommand(CLIParser parser, CLIParser.Command command) throws Exception {
switch (command.getName()) {
case JOB_CMD:
jobCommand(command.getCommandLine());
break;
case JOBS_CMD:
jobsCommand(command.getCommandLine());
break;
case HIVE_CMD:
scriptLanguageCommand(command.getCommandLine(), HIVE_CMD);
break;
......
default:
parser.showHelp(command.getCommandLine());
}
}
3.2 Hive为例
我们以Hive为例看看如何处理。Hive就是调用 scriptLanguageCommand。
private void scriptLanguageCommand(CommandLine commandLine, String jobType){
List<String> args = commandLine.getArgList();
try {
XOozieClient wc = createXOozieClient(commandLine);
Properties conf = getConfiguration(wc, commandLine);
String script = commandLine.getOptionValue(SCRIPTFILE_OPTION);
List<String> paramsList = new ArrayList<>();
......
System.out.println(JOB_ID_PREFIX + wc.submitScriptLanguage(conf, script,
args.toArray(new String[args.size()]),
paramsList.toArray(new String[paramsList.size()]), jobType));
}
}
这里关键代码是:wc.submitScriptLanguage,所以我们需要看看XOozieClient.submitScriptLanguage。其注释表明作用是通过HTTP来提交 Pig 或者 Hive。
public String submitScriptLanguage(Properties conf, String scriptFile, String[] args, String[] params, String jobType) throws IOException, OozieClientException {
switch (jobType) {
case OozieCLI.HIVE_CMD:
script = XOozieClient.HIVE_SCRIPT;
options = XOozieClient.HIVE_OPTIONS;
scriptParams = XOozieClient.HIVE_SCRIPT_PARAMS;
break;
case OozieCLI.PIG_CMD:
......
}
conf.setProperty(script, readScript(scriptFile));
setStrings(conf, options, args);
setStrings(conf, scriptParams, params);
return (new HttpJobSubmit(conf, jobType)).call();
}
而HttpJobSubmit就是向Oozie Server提交job,所以我们最终是需要去Oozie Server探究。
private class HttpJobSubmit extends ClientCallable<String> {
@Override
protected String call(HttpURLConnection conn) throws IOException, OozieClientException {
conn.setRequestProperty("content-type", RestConstants.XML_CONTENT_TYPE);
writeToXml(conf, conn.getOutputStream());
if (conn.getResponseCode() == HttpURLConnection.HTTP_CREATED) {
JSONObject json = (JSONObject) JSONValue.parse(
new InputStreamReader(conn.getInputStream(), StandardCharsets.UTF_8));
return (String) json.get(JsonTags.JOB_ID);
}
return null;
}
}
0x04 Oozie Server
4.1 我是个web程序
前面我们提到,Oozie Server是运行于Java Servlet容器(Tomcat)中的web应用程序。所以具体启动等配置信息是在web.xml中。很久没有看到web.xml了,突然觉得好陌生,嘿嘿。
<!-- Servlets -->
<servlet>
<servlet-name>callback</servlet-name>
<display-name>Callback Notification</display-name>
<servlet-class>org.apache.oozie.servlet.CallbackServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet>
<servlet-name>v1jobs</servlet-name>
<display-name>WS API for Workflow Jobs</display-name>
<servlet-class>org.apache.oozie.servlet.V1JobsServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
......
4.2 初始化服务
Ooize的很多基础工作是由Services来完成的,每一个service都是一个单例。这些服务的配置信息在ooze-default.xml中
<property>
<name>oozie.services</name>
<value>
org.apache.oozie.service.HadoopAccessorService,
org.apache.oozie.service.LiteWorkflowAppService,
org.apache.oozie.service.JPAService,
org.apache.oozie.service.DBLiteWorkflowStoreService,
org.apache.oozie.service.CallbackService,
org.apache.oozie.service.ActionService,
org.apache.oozie.service.CallableQueueService,
org.apache.oozie.service.CoordinatorEngineService,
org.apache.oozie.service.BundleEngineService,
org.apache.oozie.service.DagEngineService,
......
</value>
</property>
ServicesLoader这个类用来启动,加载配置的所有service。
public class ServicesLoader implements ServletContextListener {
private static Services services;
/**
* Initialize Oozie services.
*/
public void contextInitialized(ServletContextEvent event) {
services = new Services();
services.init();
}
}
init函数是用来初始化所有配置好的Services,如果有同类型服务,则后来者会被存储。
public class Services {
public void init() throws ServiceException {
loadServices();
}
private void loadServices() throws ServiceException {
try {
Map<Class<?>, Service> map = new LinkedHashMap<Class<?>, Service>();
Class<?>[] classes = ConfigurationService.getClasses(conf, CONF_SERVICE_CLASSES);
Class<?>[] classesExt = ConfigurationService.getClasses(conf, CONF_SERVICE_EXT_CLASSES);
List<Service> list = new ArrayList<Service>();
loadServices(classes, list);
loadServices(classesExt, list);
//removing duplicate services, strategy: last one wins
for (Service service : list) {
if (map.containsKey(service.getInterface())) {
service.getClass());
}
map.put(service.getInterface(), service);
}
for (Map.Entry<Class<?>, Service> entry : map.entrySet()) {
setService(entry.getValue().getClass());
}
}
}
}
4.3 从Job到DAG
客户通过oozie脚本提交job之后,进入org.apache.oozie.cli.OozieCLI。会生成一个OozieClient,然后使用JobCommand,提交运行的信息到V1JosServlet的doPost接口,Oozier在doPos接口中会调用submitJob()方法。此时会生成一个DAG对象,然后DAG.submitJon(JobConf,startJob)。
我们从V1JosServlet.doPost入手。这里是基类。
public abstract class BaseJobsServlet extends JsonRestServlet {
protected void doPost(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
JSONObject json = submitJob(request, conf);
}
}
然后回到 V1JosServlet.submitJob
@Override
protected JSONObject submitJob(HttpServletRequest request, Configuration conf) throws XServletException,IOException {
String jobType = request.getParameter(RestConstants.JOBTYPE_PARAM);
if (jobType == null) {
String wfPath = conf.get(OozieClient.APP_PATH);
if (wfPath != null) {
json = submitWorkflowJob(request, conf); // 我们的目标在这里
}
else if (coordPath != null) {
json = submitCoordinatorJob(request, conf);
}
else {
json = submitBundleJob(request, conf);
}
}
else { // This is a http submission job
......
}
return json;
}
然后调用到了 DagEngine.submitJob。从其注释可以看出 The DagEngine provides all the DAG engine functionality for WS calls. 这样我们就正式来到了DAG的世界。
private JSONObject submitWorkflowJob(HttpServletRequest request, Configuration conf) throws XServletException {
try {
String action = request.getParameter(RestConstants.ACTION_PARAM);
DagEngine dagEngine = Services.get().get(DagEngineService.class).getDagEngine(user);
if (action != null) {
dryrun = (action.equals(RestConstants.JOB_ACTION_DRYRUN));
}
if (dryrun) {
id = dagEngine.dryRunSubmit(conf);
}
else {
id = dagEngine.submitJob(conf, startJob); // 我们在这里
}
json.put(JsonTags.JOB_ID, id);
}
return json;
}
0x06 核心引擎
Oozie有三种核心引擎,其都是继承抽象类BaseEngine。
这三种引擎是:
- DAGEngine,负责workflow执行,我们上面代码就会来到这里.....
- CoordinatorEngine,负责coordinator执行
- BundleEngine,负责bundle执行
分别对应
- org.apache.oozie.service.CoordinatorEngineService
- org.apache.oozie.service.BundleEngineService
- org.apache.oozie.service.DagEngineService
我们之前提到,这些属于系统Services,都是Singletgon,在Oozie启动时候会加入到Services中。当需要时候通过get来获取。
public class Services {
private Map<Class<? extends Service>, Service> services = new LinkedHashMap<Class<? extends Service>, Service>();
public <T extends Service> T get(Class<T> serviceKlass) {
return (T) services.get(serviceKlass);
}
}
具体在V1JosServlet中调用举例:
String user = conf.get(OozieClient.USER_NAME);
DagEngine dagEngine = Services.get().get(DagEngineService.class).getDagEngine(user);
0x07 Command推动执行
Oozie把所有命令抽象成Command,这样其内部把程序执行总结成用Command来推动,类似于消息驱动。
Command分为同步和异步。其基类都是XCommand。XCommand提供如下模式:
- single execution: a command instance can be executed only once
- eager data loading: loads data for eager precondition check
- eager precondition check: verify precondition before obtaining lock
- data loading: loads data for precondition check and execution
- precondition check: verifies precondition for execution is still met
- locking: obtains exclusive lock on key before executing the command
- execution: command logic
public abstract class XCommand<T> implements XCallable<T> {
......
private String key;
private String name;
private String type;
private AtomicBoolean used = new AtomicBoolean(false);
private Map<Long, List<XCommand<?>>> commandQueue;
protected Instrumentation instrumentation;
......
}
XCommand的父接口XCallable继承了java.util.concurrent.Callable
。最终目的是当异步执行时候,基于优先级来排列命令的执行计划。
所以XCommand的几个关键函数就是:queue,call,execute:
- queue :向commandQueue加入一个command,这个command是在当前command执行之后,做delayed execution。在当前command执行过程中加入的具有同样的delay的commands,会后续顺序(single serial)执行。
- call就是继承的Callable实现函数,会调用到execute。
- execute则是具体Command实现自己的具体业务。
从我们常见的SubmitXCommand来看,继承关系如下:
public class SubmitXCommand extends WorkflowXCommand<String>
public abstract class WorkflowXCommand<T> extends XCommand<T>
public abstract class XCommand<T> implements XCallable<T>
public interface XCallable<T> extends Callable<T>
再比如TransitionXCommand的继承关系:
abstract class TransitionXCommand<T> extends XCommand<T>
public abstract class SubmitTransitionXCommand extends TransitionXCommand<String>
从之前的组件可以看到,任务是有状态机的概念的,准备,开始,运行中,失败结束 等等,所以对任务进行操作的命令同时需要处理状态机的变化,oozie处理任务的命令都需要继承TransitionXCommand这个抽象类,而TransitionXCommand的父类是XCommand。
0x08 引擎处理提交
前面提到,doPost 会调用到 id = dagEngine.submitJob(conf, startJob);
我们看看DAGEngine是如何处理提交的任务。
首先通过SubmitXCommand直接运行其call()来提交job。
public String submitJob(Configuration conf, boolean startJob) throws DagEngineException {
validateSubmitConfiguration(conf);
try {
String jobId;
SubmitXCommand submit = new SubmitXCommand(conf);
jobId = submit.call();
if (startJob) {
start(jobId);
}
return jobId;
}
}
然后通过StartXCommand来启动Job。从注释中我们可以看到,此时依然是同步执行 (通过主动执行call()函数)。
public void start(String jobId) throws DagEngineException {
// Changing to synchronous call from asynchronous queuing to prevent the
// loss of command if the queue is full or the queue is lost in case of
// failure.
new StartXCommand(jobId).call();
}
8.1 SubmitXCommand
SubmitXCommand处理的是提交工作,将用户提交的任务解析后更新到数据库。
主要业务是在execute中实现。
- 解析配置,获取WorkflowApp
- 创建WorkflowInstance
- 生成 WorkflowJobBean
- 通过JPA保存WorkflowJobBean 到wf_jobs
代码摘要如下:
protected String execute() throws CommandException {
WorkflowAppService wps = Services.get().get(WorkflowAppService.class);
try {
HadoopAccessorService has = Services.get().get(HadoopAccessorService.class);
FileSystem fs = has.createFileSystem(user, uri, fsConf);
// 解析配置,获取WorkflowApp
WorkflowApp app = wps.parseDef(conf, defaultConf);
// 创建WorkflowInstance
WorkflowInstance wfInstance;
wfInstance = workflowLib.createInstance(app, conf);
// 生成 WorkflowJobBean
WorkflowJobBean workflow = new WorkflowJobBean();
workflow.setId(wfInstance.getId());
workflow.setAppName(ELUtils.resolveAppName(app.getName(), conf));
workflow.setAppPath(conf.get(OozieClient.APP_PATH));
workflow.setConf(XmlUtils.prettyPrint(conf).toString());
......
workflow.setWorkflowInstance(wfInstance);
workflow.setExternalId(conf.get(OozieClient.EXTERNAL_ID));
if (!dryrun) {
workflow.setSlaXml(jobSlaXml);
// 添加到临时list
insertList.add(workflow);
JPAService jpaService = Services.get().get(JPAService.class);
if (jpaService != null) {
// 保存WorkflowJobBean 到wf_jobs
BatchQueryExecutor.getInstance().executeBatchInsertUpdateDelete(insertList, null, null);
}
}
return workflow.getId();
}
}
其中insertList是用来临时存储 WorkflowJobBean
private List<JsonBean> insertList = new ArrayList<JsonBean>();
WorkflowJobBean 对应数据库中表 WF_JOBS。
public class WorkflowJobBean implements Writable, WorkflowJob, JsonBean {
......//省略其他变量
@Transient
private List<WorkflowActionBean> actions;
}
在Oozie为了方便将用户定义的Action以及Workflow进行管理,底层使用Jpa将这些数据存储于数据库中。具体是调用executeBatchInsertUpdateDelete来通过JPA插入到数据库。
BatchQueryExecutor.getInstance().executeBatchInsertUpdateDelete(insertList, null, null);
具体BatchQueryExecutor代码如下。
public class BatchQueryExecutor {
public void executeBatchInsertUpdateDelete(Collection<JsonBean> insertList, Collection<UpdateEntry> updateList,Collection<JsonBean> deleteList) {
List<QueryEntry> queryList = new ArrayList<QueryEntry>();
JPAService jpaService = Services.get().get(JPAService.class);
EntityManager em = jpaService.getEntityManager();
if (updateList != null) {
for (UpdateEntry entry : updateList) {
Query query = null;
JsonBean bean = entry.getBean();
if (bean instanceof WorkflowJobBean) {
// 我们程序在这里
query = WorkflowJobQueryExecutor.getInstance().getUpdateQuery(
(WorkflowJobQuery) entry.getQueryName(), (WorkflowJobBean) entry.getBean(), em);
}
else if (bean instanceof WorkflowActionBean) {
query = WorkflowActionQueryExecutor.getInstance().getUpdateQuery(
(WorkflowActionQuery) entry.getQueryName(), (WorkflowActionBean) entry.getBean(), em);
}
else if {
//此处省略众多其他类型
}
queryList.add(new QueryEntry(entry.getQueryName(), query));
}
}
// 这里插入数据库
jpaService.executeBatchInsertUpdateDelete(insertList, queryList, deleteList, em);
}
}
JPA摘要代码如下:
public class JPAService implements Service, Instrumentable {
private OperationRetryHandler retryHandler;
public void executeBatchInsertUpdateDelete(final Collection<JsonBean> insertBeans, final List<QueryEntry> updateQueryList, final Collection<JsonBean> deleteBeans, final EntityManager em) {
try {
retryHandler.executeWithRetry(new Callable<Void>() {
public Void call() throws Exception {
......
if (CollectionUtils.isNotEmpty(insertBeans)) {
for (final JsonBean bean : insertBeans) {
em.persist(bean);
}
}
......
}
});
}
}
}
这样,一个Workflow Job就存储到了数据库中。
8.2 workflow生命周期
首先介绍下workflow生命周期,我们代码马上会用到PREP状态。
-
prep:一个工作流第一次创建就处于prep状态,表示工作流以及创建但是还没有运行。
-
running:当一个已经被创建的工作流job开始执行的时候,就处于running状态。它不会达到结束状态,只能因为出错而结束,或者被挂起。
-
suspended:一个running状态的工作流job会变成suspended状态,而且它会一直处于该状态,除非这个工作流job被重新开始执行或者被杀死。
-
killed:当一个工作流job处于被创建后的状态,或者处于running,suspended状态时,被杀死,则工作流job的状态变为killed状态。
-
failed:当一个工作流job不可预期的错误失败而终止,就会变为failed状态。
8.3 StartXCommand
处理完SubmitXCommand之后,Oozie Server 马上处理StartXCommand。
StartXCommand 的作用是启动Command,其继承了SignalXCommand ,所以 StartXCommand(jobId).call();
调用到了SignalXCommand的call。
public class StartXCommand extends SignalXCommand
相关代码如下:
首先,StartXCommand调用基类构造函数
public StartXCommand(String id) {
super("start", 1, id);
InstrumentUtils.incrJobCounter(getName(), 1, getInstrumentation());
}
然后,SignalXCommand得到了jobId,这个就是之前SubmitXCommand生成并且传回来的。
public SignalXCommand(String name, int priority, String jobId) {
super(name, name, priority);
this.jobId = ParamChecker.notEmpty(jobId, "jobId");
}
call()首先调用到 SignalXCommand.loadState。其会根据jobId从数据库中读取Workflow job信息。
protected void loadState() throws CommandException {
try {
jpaService = Services.get().get(JPAService.class);
if (jpaService != null) {
this.wfJob = WorkflowJobQueryExecutor.getInstance().get(WorkflowJobQuery.GET_WORKFLOW, jobId);
if (actionId != null) {
this.wfAction = WorkflowActionQueryExecutor.getInstance().get(WorkflowActionQuery.GET_ACTION_SIGNAL, actionId);
}
}
}
SQL语句如下:
@NamedQuery(name = "GET_WORKFLOW", query = "select OBJECT(w) from WorkflowJobBean w where w.id = :id"),
call()接着调用SignalXCommand.execute(),这里具体操作如下:
- 1)execute中,因为状态是PREP,所以调用workflowInstance.start,这里对应的实例是LiteWorkflowInstance
- 1.1) LiteWorkflowInstance.start 调用 signal()
- 1.1.1) signal() 调用 exiting = nodeHandler.enter(context),实际调用的是 LiteActionHandler.enter
- 1.1.1.1) 调用 LiteWorkflowStoreService.liteExecute,这里是生成WorkflowActionBean,然后添加到临时变量ACTIONS_TO_START
- 1.1.1.1.1) WorkflowActionBean action = new WorkflowActionBean();
- 1.1.1.1.2) action.setJobId(jobId); 做其他各种设置
- 1.1.1.1.3) List list = (List) context.getTransientVar(ACTIONS_TO_START);
- 1.1.1.1.4) list.add(action); 添加到临时列表
- 1.1.1.1) 调用 LiteWorkflowStoreService.liteExecute,这里是生成WorkflowActionBean,然后添加到临时变量ACTIONS_TO_START
- 1.1.1) signal() 调用 exiting = nodeHandler.enter(context),实际调用的是 LiteActionHandler.enter
- 1.2) 回到 signal(), 因为start 是 同步操作,所以exiting 为 true
- 1.2.1) signal all new synch transitions。遍历 pathsToStar,如果有同步跳转,则开始进行后一步Action的跳转,即 signal(pathToStart, "::synch:😊;
- 1.1) LiteWorkflowInstance.start 调用 signal()
- 2)回到execute(),遍历WorkflowStoreService.getActionsToStart(workflowInstance),即从ACTIONS_TO_START取Action(因为之前刚刚放入一个,所以这次获取到)
- 2.1) for 循环中遍历,因为是submit,所以 syncAction = newAction;
- 3)execute() 会调用BatchQueryExecutor.getInstance().executeBatchInsertUpdateDelete把WorkflowActionBean写入到数据库
- 4)execute() 直接启动start command:new ActionStartXCommand(wfJob, syncAction.getId(), syncAction.getType()).call();
代码如下:
protected Void execute() throws CommandException {
WorkflowInstance workflowInstance = wfJob.getWorkflowInstance();
workflowInstance.setTransientVar(WorkflowStoreService.WORKFLOW_BEAN, wfJob);
WorkflowJob.Status prevStatus = wfJob.getStatus();
WorkflowActionBean syncAction = null;
List<WorkflowActionBean> workflowActionBeanListForForked = new ArrayList<WorkflowActionBean>();
if (wfAction == null) {
if (wfJob.getStatus() == WorkflowJob.Status.PREP) {
// 对于上面的 1)
completed = workflowInstance.start();
wfJob.setStatus(WorkflowJob.Status.RUNNING);
wfJob.setStartTime(new Date());
wfJob.setWorkflowInstance(workflowInstance);
generateEvent = true;
queue(new WorkflowNotificationXCommand(wfJob));
}
}
else {
......
}
if (completed) {
......
}
else {
// 对于上面最外层的 2)
for (WorkflowActionBean newAction :
WorkflowStoreService.getActionsToStart(workflowInstance)) {
insertList.add(newAction);
if (wfAction != null) { // null during wf job submit
// 注释指出,wf job 提交时候不走这里
.....
}
else {
syncAction = newAction; // first action after wf submit should always be sync
}
}
}
// 写入 WorkflowActionBean,对于上面的 3)
BatchQueryExecutor.getInstance().executeBatchInsertUpdateDelete(insertList, updateList, null);
if (wfJob.getStatus() != WorkflowJob.Status.RUNNING && wfJob.getStatus() != WorkflowJob.Status.SUSPENDED) {
......
}
else if (syncAction != null) {
// 直接调用 call(),对应上面的 4)
new ActionStartXCommand(wfJob, syncAction.getId(), syncAction.getType()).call();
}
}
8.4 数据库信息
Workflow 数据库信息从WorkflowActionBean中可以看出,我们这里要重点说明的就是transition字段,Oozie用transition来记录本Action下一步要跳转到哪里。WorkflowActionBean摘要如下:
public class WorkflowActionBean implements Writable, WorkflowAction, JsonBean {
@Id
private String id;
@Basic
@Index
@Column(name = "wf_id")
private String wfId = null;
@Basic
@Index
@Column(name = "status")
private String statusStr = WorkflowAction.Status.PREP.toString();
@Basic
@Column(name = "execution_path", length = 1024)
private String executionPath = null;
@Basic
@Column(name = "transition")
private String transition = null;
@Basic
@Column(name = "data")
@Lob
@Strategy("org.apache.oozie.executor.jpa.StringBlobValueHandler")
private StringBlob data;
}
8.5 同步执行
同步执行的跳转主要是在LiteWorkflowInstance.signal这里体现,如果命令结束后发现后续还有同步跳转,则就继续执行。
public synchronized boolean signal(String executionPath, String signalValue) throws WorkflowException {
// signal all new synch transitions
for (String pathToStart : pathsToStart) {
signal(pathToStart, "::synch::");
}
}
至此,程序提交已经完成,后续就是程序在Oozie内部的执行阶段,这就是从 ActionStartXCommand 开始了。
0xFF 参考
【原创】大叔经验分享(6)Oozie如何查看提交到Yarn上的任务日志