用Oracle实现ASH的数据透视图
11g里面有个很有用的新特性,对数据透视图的支持。
简单而言,它可以实现宽表和窄表之间的转化。举一个例子,有一张表记录了全校所有班级所有学生的成绩(A,B,C,D,E),现在想统计每个班级里每个分数级别对应的学生人数。当然,一个SQL就可以实现:
SELECT class, score, count(*) FROM score_table GROUP BY class, score;
结果的格式如下:
班级 分数 人数 一年一班 A 10 一年一班 B 16 一年一班 C 16 一年一班 D 16 一年一班 E 16 一年二班 A 15 一年二班 B 14 一年二班 C 15 一年二班 D 14 一年二班 E 15
不过,很多人更想要下面的格式
班级 A B C D E 一年一班 10 16 16 16 16 一年二班 15 14 15 14 15
第二种格式显然简单明了多了。
用Oracle的新语法,可以实现如下
SELECT * FROM ( SELECT class,score,count(*) cnt FROM score_table GROUP BY class,score ) pivot ( sum(cnt) FOR score IN ('A','B','C','D','E') ) ;
一个更实用的场合是对ASH(active session history)数据的处理上。
一般而言,我们需要一段时间内Top 10的wait event,并掌握其在每个时间片(例如10 seconds)里的分布。这些信息可以通过下面的SQL进行获取:
SELECT to_char(to_date(trunc(to_char(sample_time,'SSSSS')/10)*10,'SSSSS'),'hh24:mi:ss') start_time , decode(ash.session_state,'ON CPU','ON CPU',ash.event) event , count(1)/10 total FROM v$active_session_history ash WHERE sample_time > sysdate-1/24 GROUP BY trunc(to_char(sample_time,'SSSSS')/10) , decode(ash.session_state,'ON CPU','ON CPU',ash.event) ;
同样的,我们更习惯将这个结果进行倒置。这同样可以通过pivot来实现:
SELECT * FROM (SELECT to_char(to_date(trunc(to_char(sample_time,'SSSSS')/10)*10,'SSSSS'),'hh24:mi:ss') start_time , decode(ash.session_state,'ON CPU','ON CPU',ash.event) event , count(1)/10 total FROM v$active_session_history ash WHERE sample_time > sysdate-1/24 GROUP BY trunc(to_char(sample_time,'SSSSS')/10) , decode(ash.session_state,'ON CPU','ON CPU',ash.event) ) ash pivot (sum(total) FOR event IN ('ON CPU' AS TOP1,'PX Deq: Slave Session Stats' AS TOP2)) ORDER BY 1;
下面是一个ASH的例子,系统的工作状态已经一目了然了!
TOP EVENT ----- ---------------------------------------------------------------- TOP1 cell smart table scan TOP2 ASM file metadata operation TOP3 control file sequential read TOP4 ON CPU TOP5 enq: XL - fault extent map TOP6 DFS lock handle TOP7 cell single block physical read TOP8 reliable message TOP9 read by other session TOP10 latch: shared pool TIME TOP1 TOP2 TOP3 TOP4 TOP5 TOP6 TOP7 TOP8 TOP9 TOP10 -------- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- 00:30:50 1 00:31:30 00:31:40 00:31:50 00:32:10 00:32:30 00:32:50 1 00:34:10 00:34:30 1 00:34:40 00:35:10 1 00:35:40 1 00:37:50 16 34 5 9 2 1 14 3 9 00:38:00 296 95 7 9 3 6 1 6 00:38:10 478 133 15 4 17 7 1 00:38:20 543 71 21 6 8 7 5 00:38:30 531 81 13 2 14 9 1 2 00:38:40 600 30 17 4 2 1 2 00:38:50 592 36 16 4 5 10 1 00:39:00 609 20 12 6 10 4 00:39:10 620 14 13 4 2 10 00:39:20 628 5 10 4 10 1 00:39:30 248 7 4 4 4