Spark 资源调度包 stage 类解析

spark 资源调度包 Stage(阶段) 类解析

  • Stage 概念

    • Spark 任务会根据 RDD 之间的依赖关系, 形成一个DAG有向无环图, DAG会被提交给DAGScheduler, DAGSchedular 会把DAG划分为相互依赖的多个stage。

    • 而划分stage的依据就是RDD之间的宽窄依赖。

    • 每个stage包含一个或多个task任务。而这些task以taskSet的形式提交给TaskScheduler运行。

    • stage是由一组并行的task组成的。

    • stage计算模式

      • pipeline 管道设计模式(是一种思想)

        1571827500483

      • 由于 RDD 中记录的是 执行的算子(函数)的记录(业务逻辑), 图中的task可以看作是一系列函数的迭代计算, 比如: f4(f3(f2(f1(" ... ")))) <=> 将f1("...") 的结果作为参数传入f2()进行计算, 再将该次计算的结果作为参数传入f3()进行计算......

      • 这种思想其实在线代中很常见, 而scala的高阶函数可以理解为其的一种具体体现。

      • 数据在管道里什么时候数据会落地?

      • Stage 的 task 并行度是由stage的最后一个RDD的分区数来决定的。

      • Stage 的 task逻辑不一定都一样

      • 什么操作会改变RDD分区(partition)数?

        • 除repartition外的大多数宽依赖型算子操作大多会改变RDD的分区数

        • 窄依赖算子不会改变RDD的分区数

      • 以下代码验证了pipeline管道设计模式的存在

        package com.ronnie.pipeline
        
        import org.apache.spark.rdd.RDD
        import org.apache.spark.{SparkConf, SparkContext}
        
        object Pipeline {
          def main(args: Array[String]): Unit = {
            val conf = new SparkConf()
            conf.setMaster("local").setAppName("pipeline")
            val sc = new SparkContext(conf)
            val rdd: RDD[Int] = sc.parallelize(Array(1,2,3,4))
            val rdd01: RDD[Unit] = rdd.map{ x => {println("map ------" + x)}}
            val rdd02: RDD[Unit] = rdd01.filter{ x => println("filter ******" + x)
              // 返回所有, 不过滤
              true
            }
            rdd02.collect()
            sc.stop()
          }
        }
        
        • 输出结果:

          map ------1
          filter ******()
          map ------2
          filter ******()
          map ------3
          filter ******()
          map ------4
          filter ******()
          
          • 可以看到filter总是在map之后执行而不是批量执行map后再批量执行filter
  • 类注释:

    /**
     * A stage is a set of parallel tasks all computing the same function that need to run as part
     * of a Spark job, where all the tasks have the same shuffle dependencies. 
     * 一个阶段是所有计算相同功能的并行任务集合, 作为spark作业的一部分, 这些任务都有相同的 shuffle 依赖
     *
     * Each DAG of tasks run by the scheduler is split up into stages at the boundaries where  
     * shuffle occurs, and then the DAGScheduler runs these stages in topological order.
     * 每个由调度器运行的任务的有向无环图在shuffle发生的分界处分化成不同的阶段, 并且这些有向无环图的调度器 
     * 将以拓扑排序来运行这些 不同阶段的任务
     *
     * Each Stage can either be a shuffle map stage, in which case its tasks' results are input for
     * other stage(s), or a result stage, in which case its tasks directly compute a Spark action
     * (e.g. count(), save(), etc) by running a function on an RDD.
     * 每个阶段都可以是一个 shuffle 匹配阶段, 该任务的结果可以被其他阶段作为导入, 也可以是 一个结果阶段,  
     * 它的任务 通过 在RDD上运行 一个公式 来直接计算 一个 spark 行为(计数, 保存等...)
     *
     * For shuffle map stages, we also track the nodes that each output partition is on.
     * 对于 shuffle 匹配阶段, 我们会追踪 每个输出的分区的节点
     *
     * Each Stage also has a firstJobId, identifying the job that first submitted the stage.  When 
     * FIFO scheduling is used, this allows Stages from earlier jobs to be computed first or 
     * recovered faster on failure.
     * 每个阶段都有一个 首任务Id, 用于辨识第一个提交到该阶段的 任务。 当 先进先出 调度策略被使用时, 这会允
     * 许 更早 的 作业 的阶段先被计算, 或者 在失败之后更早的恢复。
     *
     * Finally, a single stage can be re-executed in multiple attempts due to fault recovery. In 
     * that case, the Stage object will track multiple StageInfo objects to pass to listeners or \
     * the web UI.
     * 最终, 由于 容错恢复机制, 单个阶段可以在多次尝试运行中 被重新执行。在这种情况下, 该阶段对象会追踪 许
     * 多 阶段信息对象 并 将信息传递给监听者 或者 web UI 界面
     *
     * The latest one will be accessible through latestInfo.
     * 最新的阶段可以通过 最新的信息获取
     *
     * @param id Unique stage ID    id: 唯一的阶段Id
     * @param rdd RDD that this stage runs on: for a shuffle map stage, it's the RDD we run map 
     * tasks on, while for a result stage, it's the target RDD that we ran an action on
     * rdd:该 阶段 所运行在的 RDD:对于shuffle匹配阶段, 该RDD是我们 运行匹配任务 所在的RDD, 但对于结果阶
     * 段,该RDD是我们运行 行为所在的RDD
     * @param numTasks Total number of tasks in stage; 当前阶段的任务数量
     * result stages in particular may not need to compute all partitions, e.g. for first(), 
     * lookup(), and take().
     * 结果阶段 实际上不一定需要计算所有分区, 比如使用 first(), lookup() 和 take() 等算子
     * @param parents List of stages that this stage depends on (through shuffle dependencies).
     * parent: 该阶段 所依赖(shuffle依赖) 的 阶段列表
     * @param firstJobId ID of the first job this stage was part of, for FIFO scheduling.
     * firstJobId: 该阶段的第一个任务Id, 用于先进先出调度
     * @param callSite Location in the user program associated with this stage: either where the 
     * target RDD was created, for a shuffle map stage, or where the action for a result stage was 
     * called.
     * callSite: 与该阶段相关的用户程序的位置: 对于 shuffle 匹配阶段 是 目标 RDD创建的位置, 对于 结果
     * 阶段, 是 行为被调用的位置 (调用位点)
     */
    
  • 代码:

    private[scheduler] abstract class Stage(
        val id: Int,
        val rdd: RDD[_],
        val numTasks: Int,
        val parents: List[Stage],
        val firstJobId: Int,
        val callSite: CallSite)
      extends Logging {
      // 根据数组长度确定分区数
      val numPartitions = rdd.partitions.length
    
      /** Set of jobs that this stage belongs to. 该阶段 的任务Id集合*/
      val jobIds = new HashSet[Int]
    
      /** The ID to use for the next new attempt for this stage. 
       * 该阶段的下一次新尝试的 Id
       */
      private var nextAttemptId: Int = 0
      // 短型的调用位点
      val name: String = callSite.shortForm
      // 长型的调用位点    
      val details: String = callSite.longForm
    
      /**
       * Pointer to the [[StageInfo]] object for the most recent attempt. 
       * 指向阶段信息对象的指针, 用于获取最近最多的尝试
       * This needs to be initialized here, before any attempts have actually been created, because 
       * the DAGScheduler uses this StageInfo to tell SparkListeners when a job starts (which 
       * happens before any stage attempts have been created).
       * 在任何尝试被实际创建之前, 它需要被初始化, 因为 有向无环图的调度器 使用了该阶段信息来告诉spark的监
       * 听者有任务启动了(这发生在任何阶段的尝试被发生之前)
       */
      private var _latestInfo: StageInfo = StageInfo.fromStage(this, nextAttemptId)
    
      /**
       * Set of stage attempt IDs that have failed with a FetchFailure. 
       * 拉取失败的的阶段尝试Id集
       * We keep track of these failures in order to avoid endless retries if a stage keeps failing 
       * with a FetchFailure.
       * 我们追踪这些失败时为了防止 一个阶段一直发生拉取失败后 无尽的重试
       * We keep track of each attempt ID that has failed to avoid recording duplicate failures if
       * multiple tasks from the same stage attempt fail (SPARK-5945).
       * 我们追踪失败的每次尝试的Id以防止 如果许多任务在同一个阶段的尝试中失败 会导致 记录重复的失败
       */
      val fetchFailedAttemptIds = new HashSet[Int]
      // 清除失败Id
      private[scheduler] def clearFailures() : Unit = {
        fetchFailedAttemptIds.clear()
      }
    
      /** Creates a new attempt for this stage by creating a new StageInfo with a new attempt ID.   
       * 通过创建一个新的附带新的尝试Id的状态信息 来为当前阶段创建一个新的尝试
       */
      def makeNewStageAttempt(
          // 需要计算的分区
          numPartitionsToCompute: Int,
          // 本地优先的任务
          taskLocalityPreferences: Seq[Seq[TaskLocation]] = Seq.empty): Unit = {
          // TaskMetrics是内部累加器的一个包装类
        val metrics = new TaskMetrics
        metrics.register(rdd.sparkContext)
         // 获取最近的阶段信息 
        _latestInfo = StageInfo.fromStage(
          this, nextAttemptId, Some(numPartitionsToCompute), metrics, taskLocalityPreferences)
        nextAttemptId += 1
      }
    
      /** Returns the StageInfo for the most recent attempt for this stage. 
       * 返回最近最多尝试的 当前阶段的 阶段信息
       */
      def latestInfo: StageInfo = _latestInfo
    
      override final def hashCode(): Int = id
    
      override final def equals(other: Any): Boolean = other match {
        case stage: Stage => stage != null && stage.id == id
        case _ => false
      }
    
      /** Returns the sequence of partition ids that are missing (i.e. needs to be computed). 
       * 返回缺失的分区 id 的序列
       */
      def findMissingPartitions(): Seq[Int]
    }
    

    1571755476481

posted @ 2019-10-22 22:48  wellDoneGaben  阅读(351)  评论(0编辑  收藏  举报