上一页 1 2 3 4 5 6 7 ··· 15 下一页
摘要: 以上代码用于忽略级别 2 及以下的消息(级别 1 是提示,级别 2 是警告,级别 3 是错误)。 阅读全文
posted @ 2019-07-08 15:34 rongye 阅读(148) 评论(0) 推荐(0) 编辑
摘要: #!/usr/bin/env pythonimport tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets("MNIST_data",o 阅读全文
posted @ 2018-12-18 20:00 rongye 阅读(235) 评论(0) 推荐(0) 编辑
摘要: #!/usr/bin/env pythonimport tensorflow as tfinput_num = 64output_num = 2def create_file(path,output_num): #write = tf.python_io.TFRecordWriter('train. 阅读全文
posted @ 2018-12-16 09:59 rongye 阅读(587) 评论(0) 推荐(0) 编辑
摘要: """Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly."""import tensorflow as tfimport numpy 阅读全文
posted @ 2018-12-15 20:43 rongye 阅读(244) 评论(0) 推荐(0) 编辑
摘要: """Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly."""import tensorflow as tfimport numpy 阅读全文
posted @ 2018-12-15 20:07 rongye 阅读(262) 评论(0) 推荐(0) 编辑
摘要: #!/usr/bin/env pythonimport tensorflow as tf# 每个批次的大小batch_size = 50# 计算一共有多少个批次#n_batch = mnist.train.num_examples // batch_sizeinput_num = 16output_ 阅读全文
posted @ 2018-11-28 09:31 rongye 阅读(189) 评论(0) 推荐(0) 编辑
摘要: #!/usr/bin/env pythonimport tensorflow as tfinput_num = 16output_num = 11def create_file(path,output_num): with open(path,'r') as file: lines = file.r 阅读全文
posted @ 2018-11-27 21:49 rongye 阅读(186) 评论(0) 推荐(0) 编辑
摘要: #!/usr/bin/env pythonimport tensorflow as tfimport numpy as npdef read_and_decode(filename): # 读入dog_train.tfrecords filename_queue = tf.train.string_ 阅读全文
posted @ 2018-11-27 20:50 rongye 阅读(182) 评论(0) 推荐(0) 编辑
摘要: #!/usr/bin/env pythonimport tensorflow as tfimport numpy as np# write = tf.python_io.TFRecordWriter('train.tfrecords')# #img_raw = np.random.random_in 阅读全文
posted @ 2018-11-27 19:47 rongye 阅读(824) 评论(0) 推荐(0) 编辑
摘要: tensorflow读取数据-tfrecord格式 https://blog.csdn.net/happyhorizion/article/details/77894055 Tensorflow第三课数据加载 非图片数据 https://blog.csdn.net/clever_wr/article 阅读全文
posted @ 2018-11-27 11:43 rongye 阅读(211) 评论(0) 推荐(0) 编辑
上一页 1 2 3 4 5 6 7 ··· 15 下一页