dbt config macro 简单说明
dbt 不少资源类型都支持config macro 的使用,可以进行灵活的配置管理
参考使用
- 配置
模型的执行物化策略
{{ config(
materialized="<materialization_name>",
sql_header="<string>"
) }}
快照的
{{ config(
target_schema="<string>",
target_database="<string>",
unique_key="<column_name_or_expression>",
strategy="timestamp" | "check",
updated_at="<column_name>",
check_cols=["<column_name>"] | "all"
) }}
- 获取config
{% materialization incremental, default -%}
{%- set unique_key = config.get('unique_key') -%}
- 提供的方法
get,require,
内部处理
实际上就是一个类,实现了一些方法
- 参考配置
class Config(Protocol):
def __init__(self, model, context_config: Optional[ContextConfig]):
# 这个是解析的,当然还有不少其他的实现
# Implementation of "config(..)" calls in models
class ParseConfigObject(Config):
def __init__(self, model, context_config: Optional[ContextConfig]):
self.model = model
self.context_config = context_config
def _transform_config(self, config):
for oldkey in ("pre_hook", "post_hook"):
if oldkey in config:
newkey = oldkey.replace("_", "-")
if newkey in config:
raise ConflictingConfigKeysError(oldkey, newkey, node=self.model)
config[newkey] = config.pop(oldkey)
return config
def __call__(self, *args, **kwargs):
if len(args) == 1 and len(kwargs) == 0:
opts = args[0]
elif len(args) == 0 and len(kwargs) > 0:
opts = kwargs
else:
raise InlineModelConfigError(node=self.model)
opts = self._transform_config(opts)
# it's ok to have a parse context with no context config, but you must
# not call it!
if self.context_config is None:
raise DbtRuntimeError("At parse time, did not receive a context config")
self.context_config.add_config_call(opts)
return ""
def set(self, name, value):
return self.__call__({name: value})
def require(self, name, validator=None):
return ""
def get(self, name, default=None, validator=None):
return ""
def persist_relation_docs(self) -> bool:
return False
def persist_column_docs(self) -> bool:
return False
- 上下文处理
render_with_context 会使用_context_for ,_context_for会调用generate_parser_model_context 会使用到config
def generate_parser_model_context(
model: ManifestNode,
config: RuntimeConfig,
manifest: Manifest,
context_config: ContextConfig,
) -> Dict[str, Any]:
# The __init__ method of ModelContext also initializes
# a ManifestContext object which creates a MacroNamespaceBuilder
# which adds every macro in the Manifest.
ctx = ModelContext(model, config, manifest, ParseProvider(), context_config)
# The 'to_dict' method in ManifestContext moves all of the macro names
# in the macro 'namespace' up to top level keys
return ctx.to_dict()
说明
以上是关于dbt config的简单说明,对于详细使用可以参考官方文档
参考资料
https://docs.getdbt.com/reference/data-test-configs
https://docs.getdbt.com/reference/dbt-jinja-functions/config