dbt macro 的执行简单说明

BaseAdapter 中包含了一个adapter 实际运行依赖的转换,链接处理,当然也包含了macro 的执行,具体方法有直接的execute_macro
ModelRunner 中的materialization_macro(run 命令)还有run-operation 中RunOperationTask 的_run_unsafe 方法

ModelRunner call_macro 处理

  • 参考调用
 def execute(self, model, manifest):
        context = generate_runtime_model_context(model, self.config, manifest)
 
        materialization_macro = manifest.find_materialization_macro_by_name(
            self.config.project_name, model.get_materialization(), self.adapter.type()
        )
 
        if materialization_macro is None:
            raise MissingMaterializationError(
                materialization=model.get_materialization(), adapter_type=self.adapter.type()
            )
 
        if "config" not in context:
            raise DbtInternalError(
                "Invalid materialization context generated, missing config: {}".format(context)
            )
        context_config = context["config"]
 
        mat_has_supported_langs = hasattr(materialization_macro, "supported_languages")
        model_lang_supported = model.language in materialization_macro.supported_languages
        if mat_has_supported_langs and not model_lang_supported:
            str_langs = [str(lang) for lang in materialization_macro.supported_languages]
            raise DbtValidationError(
                f'Materialization "{materialization_macro.name}" only supports languages {str_langs}; '
                f'got "{model.language}"'
            )
 
        hook_ctx = self.adapter.pre_model_hook(context_config)
        try:
           # 此处主要处理了materialization_macro 相关的
            result = MacroGenerator(
                materialization_macro, context, stack=context["context_macro_stack"]
            )()
        finally:
            self.adapter.post_model_hook(context_config, hook_ctx)
 
        for relation in self._materialization_relations(result, model):
            self.adapter.cache_added(relation.incorporate(dbt_created=True))
 
        return self._build_run_model_result(model, context)
  • MacroGenerator 处理
def __call__(self, *args, **kwargs):
    with self.track_call():
        return self.call_macro(*args, **kwargs)
  • call_macro 处理
def call_macro(self, *args, **kwargs):
    # called from __call__ methods
    if self.context is None:
        raise DbtInternalError("Context is still None in call_macro!")
    assert self.context is not None
   # 先获取macro,使用动态创建macro 模块
    macro = self.get_macro()
    with self.exception_handler():
        try:
            return macro(*args, **kwargs)
        except MacroReturn as e:
            return e.value

RunOperationTask 调用

实际上就是execute_macro 参考处理

  • 参考代码
    dbt/adapters/base/impl.py
def execute_macro(
    self,
    macro_name: str,
    macro_resolver: Optional[MacroResolverProtocol] = None,
    project: Optional[str] = None,
    context_override: Optional[Dict[str, Any]] = None,
    kwargs: Optional[Dict[str, Any]] = None,
) -> AttrDict:
    """Look macro_name up in the manifest and execute its results.
 
    :param macro_name: The name of the macro to execute.
    :param manifest: The manifest to use for generating the base macro
        execution context. If none is provided, use the internal manifest.
    :param project: The name of the project to search in, or None for the
        first match.
    :param context_override: An optional dict to update() the macro
        execution context.
    :param kwargs: An optional dict of keyword args used to pass to the
        macro.
    """
 
    if kwargs is None:
        kwargs = {}
    if context_override is None:
        context_override = {}
    # 会基于dbt 实现的macro_resolver 
    resolver = macro_resolver or self._macro_resolver
    if resolver is None:
        raise DbtInternalError("Macro resolver was None when calling execute_macro!")
   # 同时dbt 还包装了一个MacroContextGeneratorCallable
    if self._macro_context_generator is None:
        raise DbtInternalError("Macro context generator was None when calling execute_macro!")
   # 首先通过resolver查找macro 
    macro = resolver.find_macro_by_name(macro_name, self.config.project_name, project)
    if macro is None:
        if project is None:
            package_name = "any package"
        else:
            package_name = 'the "{}" package'.format(project)
 
        raise DbtRuntimeError(
            'dbt could not find a macro with the name "{}" in {}'.format(
                macro_name, package_name
            )
        )
 
    macro_context = self._macro_context_generator(macro, self.config, resolver, project)
    macro_context.update(context_override)
    #  dbt_common/clients/jinja.py 中的CallableMacroGenerator 类进行macro 函数的包装,通过__call__ 进行处理的
    # 实际上此处MacroGenerator是CallableMacroGenerator 的子类,实际处理与上边的是类似的
    macro_function = CallableMacroGenerator(macro, macro_context)
 
    with self.connections.exception_handler(f"macro {macro_name}"):
       # 执行macro
        result = macro_function(**kwargs)
    return result
  • get_macro 处理
    dbt_common/clients/jinja.py 中,此处有一个比较有意思的地方,因为默认macro 是不带dbt_macro__的,但是get_dbt_macro_name 会包含一个前缀,实际上是dbt 自己开发了一个MacroFuzzParser,对于macro 添加了一个前缀
def get_macro(self):
    name = self.get_name()
    template = self.get_template()
    # make the module. previously we set both vars and local, but that's
    # redundant: They both end up in the same place
    # make_module is in jinja2.environment. It returns a TemplateModule
    module = template.make_module(vars=self.context, shared=False)
    macro = module.__dict__[get_dbt_macro_name(name)]
 
    return macro
  • MacroFuzzParser 处理
class MacroFuzzParser(jinja2.parser.Parser):
    def parse_macro(self):
        node = jinja2.nodes.Macro(lineno=next(self.stream).lineno)
 
        # modified to fuzz macros defined in the same file. this way
        # dbt can understand the stack of macros being called.
        #  - @cmcarthur
        # 此处添加了自己的prefix  dbt_macro__
        node.name = get_dbt_macro_name(self.parse_assign_target(name_only=True).name)
 
        self.parse_signature(node)
        node.body = self.parse_statements(("name:endmacro",), drop_needle=True)
        return node
  • MacroFuzzParser 的使用
    MacroFuzzEnvironment 扩展类中,默认dbt 使用的是MacroFuzzEnvironment 这个env
class MacroFuzzEnvironment(jinja2.sandbox.SandboxedEnvironment):
    def _parse(self, source, name, filename):
        return MacroFuzzParser(self, source, name, filename).parse()

说明

dbt 对于macro 的处理直接使用的是文字符串模版模式,同时对于macro 的解析添加了自己的实现,灵活性上也很方便,同时对于项目的macro 会在之前实际命令之前先生成解析好(包含了依赖处理),以上只是简单说明关于自行,后边会说明下dbt 对于jinja2的包装,同时
还有macrocontext macro resovler

参考资料

dbt/adapters/base/impl.py (adapters 包)
dbt_common/clients/jinja.py (common 包)

posted on 2024-04-01 08:00  荣锋亮  阅读(26)  评论(0编辑  收藏  举报

导航