机器视觉开源代码集合

 

机器视觉开源代码集合




 

 

一、特征提取FeatureExtraction

§  SIFT [1] [Demo program][SIFT Library] [VLFeat]

§  PCA-SIFT[2] [Project]

§  Affine-SIFT[3] [Project]

§  SURF [4] [OpenSURF] [Matlab Wrapper]

§  AffineCovariant Features [5] [Oxford project]

§  MSER [6] [Oxford project] [VLFeat]

§  GeometricBlur [7] [Code]

§  LocalSelf-Similarity Descriptor [8] [Oxford implementation]

§  Global andEfficient Self-Similarity [9] [Code]

§  Histogramof Oriented Graidents [10] [INRIA Object Localization Toolkit] [OLT toolkit for Windows]

§  GIST [11][Project]

§  ShapeContext [12] [Project]

§  ColorDescriptor [13] [Project]

§  Pyramidsof Histograms of Oriented Gradients [Code]

§  Space-TimeInterest Points (STIP) [14][Project] [Code]

§  BoundaryPreserving Dense Local Regions [15][Project]

§  WeightedHistogram[Code]

§  Histogram-basedInterest Points Detectors[Paper][Code]

§  An OpenCV- C++ implementation of Local Self Similarity Descriptors [Project]

§  FastSparse Representation with Prototypes[Project]

§  CornerDetection [Project]

§  AGASTCorner Detector: faster than FAST and even FAST-ER[Project]

§  Real-timeFacial Feature Detection using Conditional Regression Forests[Project]

§  Global andEfficient Self-Similarity for Object Classification and Detection[code]

§  WαSH:Weighted α-Shapes for Local Feature Detection[Project]

§  HOG[Project]

§  OnlineSelection of Discriminative Tracking Features[Project]

 

二、图像分割ImageSegmentation

§  NormalizedCut [1] [Matlab code]

§  Gerg Mori’Superpixel code [2] [Matlab code]

§  EfficientGraph-based Image Segmentation [3] [C++ code] [Matlab wrapper]

§  Mean-ShiftImage Segmentation [4] [EDISON C++ code] [Matlab wrapper]

§  OWT-UCMHierarchical Segmentation [5] [Resources]

§  Turbepixels[6] [Matlab code 32bit] [Matlab code 64bit] [Updated code]

§  Quick-Shift[7] [VLFeat]

§  SLICSuperpixels [8] [Project]

§  Segmentationby Minimum Code Length [9] [Project]

§  BiasedNormalized Cut [10] [Project]

§  SegmentationTree [11-12] [Project]

§  EntropyRate Superpixel Segmentation [13] [Code]

§  FastApproximate Energy Minimization via Graph Cuts[Paper][Code]

§  EfficientPlanar Graph Cuts with Applications in Computer Vision[Paper][Code]

§  IsoperimetricGraph Partitioning for Image Segmentation[Paper][Code]

§  RandomWalks for Image Segmentation[Paper][Code]

§  Blossom V:A new implementation of a minimum cost perfect matching algorithm[Code]

§  AnExperimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimizationin Computer Vision[Paper][Code]

§  GeodesicStar Convexity for Interactive Image Segmentation[Project]

§  ContourDetection and Image Segmentation Resources[Project][Code]

§  BiasedNormalized Cuts[Project]

§  Max-flow/min-cut[Project]

§  Chan-VeseSegmentation using Level Set[Project]

§  A Toolboxof Level Set Methods[Project]

§  Re-initializationFree Level Set Evolution via Reaction Diffusion[Project]

§  ImprovedC-V active contour model[Paper][Code]

§  AVariational Multiphase Level Set Approach to Simultaneous Segmentation and BiasCorrection[Paper][Code]

§  Level SetMethod Research by Chunming Li[Project]

§  ClassCutfor Unsupervised Class Segmentation[code]

§  SEEDS:Superpixels Extracted via Energy-Driven Sampling [Project][other]

 

三、目标检测ObjectDetection

§  A simpleobject detector with boosting [Project]

§  INRIAObject Detection and Localization Toolkit [1] [Project]

§  DiscriminativelyTrained Deformable Part Models [2] [Project]

§  CascadeObject Detection with Deformable Part Models [3] [Project]

§  Poselet[4] [Project]

§  ImplicitShape Model [5] [Project]

§  Viola andJones’s Face Detection [6] [Project]

§  BayesianModelling of Dyanmic Scenes for Object Detection[Paper][Code]

§  Handdetection using multiple proposals[Project]

§  ColorConstancy, Intrinsic Images, and Shape Estimation[Paper][Code]

§  Discriminativelytrained deformable part models[Project]

§  GradientResponse Maps for Real-Time Detection of Texture-Less Objects: LineMOD [Project]

§  ImageProcessing On Line[Project]

§  RobustOptical Flow Estimation[Project]

§  Where'sWaldo: Matching People in Images of Crowds[Project]

§  ScalableMulti-class Object Detection[Project]

§  Class-SpecificHough Forests for Object Detection[Project]

§  DeformedLattice Detection In Real-World Images[Project]

§  Discriminativelytrained deformable part models[Project]

 

四、显著性检测SaliencyDetection

§  Itti,Koch, and Niebur’ saliency detection [1] [Matlab code]

§  Frequency-tunedsalient region detection [2] [Project]

§  Saliencydetection using maximum symmetric surround [3] [Project]

§  Attentionvia Information Maximization [4] [Matlab code]

§  Context-awaresaliency detection [5] [Matlab code]

§  Graph-basedvisual saliency [6] [Matlab code]

§  Saliencydetection: A spectral residual approach. [7] [Matlab code]

§  Segmentingsalient objects from images and videos. [8] [Matlabcode]

§  SaliencyUsing Natural statistics. [9] [Matlab code]

§  DiscriminantSaliency for Visual Recognition from Cluttered Scenes. [10] [Code]

§  Learningto Predict Where Humans Look [11] [Project]

§  GlobalContrast based Salient Region Detection [12] [Project]

§  BayesianSaliency via Low and Mid Level Cues[Project]

§  Top-DownVisual Saliency via Joint CRF and Dictionary Learning[Paper][Code]

§  SaliencyDetection: A Spectral Residual Approach[Code]

 

五、图像分类、聚类ImageClassification, Clustering

§  PyramidMatch [1] [Project]

§  SpatialPyramid Matching [2] [Code]

§  Locality-constrainedLinear Coding [3] [Project] [Matlab code]

§  SparseCoding [4] [Project] [Matlab code]

§  TextureClassification [5] [Project]

§  MultipleKernels for Image Classification [6] [Project]

§  FeatureCombination [7] [Project]

§  SuperParsing[Code]

§  LargeScale Correlation Clustering Optimization[Matlab code]

§  Detectingand Sketching the Common[Project]

§  Self-TuningSpectral Clustering[Project][Code]

§  UserAssisted Separation of Reflections from a Single Image Using a Sparsity Prior[Paper][Code]

§  Filtersfor Texture Classification[Project]

§  MultipleKernel Learning for Image Classification[Project]

§  SLICSuperpixels[Project]

 

六、抠图ImageMatting

§  A ClosedForm Solution to Natural Image Matting [Code]

§  SpectralMatting [Project]

§  Learning-basedMatting [Code]

 

七、目标跟踪ObjectTracking

§  A Forestof Sensors - Tracking Adaptive Background Mixture Models [Project]

§  ObjectTracking via Partial Least Squares Analysis[Paper][Code]

§  RobustObject Tracking with Online Multiple Instance Learning[Paper][Code]

§  OnlineVisual Tracking with Histograms and Articulating Blocks[Project]

§  IncrementalLearning for Robust Visual Tracking[Project]

§  Real-timeCompressive Tracking[Project]

§  RobustObject Tracking via Sparsity-based Collaborative Model[Project]

§  VisualTracking via Adaptive Structural Local Sparse Appearance Model[Project]

§  OnlineDiscriminative Object Tracking with Local Sparse Representation[Paper][Code]

§  SuperpixelTracking[Project]

§  LearningHierarchical Image Representation with Sparsity, Saliency and Locality[Paper][Code]

§  OnlineMultiple Support Instance Tracking [Paper][Code]

§  VisualTracking with Online Multiple Instance Learning[Project]

§  Objectdetection and recognition[Project]

§  CompressiveSensing Resources[Project]

§  RobustReal-Time Visual Tracking using Pixel-Wise Posteriors[Project]

§  Tracking-Learning-Detection[Project][OpenTLD/C++ Code]

§  the HandVuvision-based hand gesture interface[Project]

§  LearningProbabilistic Non-Linear Latent Variable Models for Tracking Complex Activities[Project]

 

八、Kinect

§  Kinecttoolbox[Project]

§  OpenNI[Project]

§  zouxy09CSDN Blog[Resource]

§  FingerTracker手指跟踪[code]

 

九、3D相关:

§  3DReconstruction of a Moving Object[Paper] [Code]

§  Shape FromShading Using Linear Approximation[Code]

§  CombiningShape from Shading and Stereo Depth Maps[Project][Code]

§  Shape fromShading: A Survey[Paper][Code]

§  ASpatio-Temporal Descriptor based on 3D Gradients (HOG3D)[Project][Code]

§  Multi-cameraScene Reconstruction via Graph Cuts[Paper][Code]

§  A FastMarching Formulation of Perspective Shape from Shading under FrontalIllumination[Paper][Code]

§  Reconstruction:3DShape, Illumination, Shading, Reflectance, Texture[Project]

§  MonocularTracking of 3D Human Motion with a Coordinated Mixture of Factor Analyzers[Code]

§  Learning3-D Scene Structure from a Single Still Image[Project]

 

十、机器学习算法:

§  Matlabclass for computing Approximate Nearest Nieghbor (ANN) [Matlab class providinginterface toANN library]

§  RandomSampling[code]

§  ProbabilisticLatent Semantic Analysis (pLSA)[Code]

§  FASTANNand FASTCLUSTER for approximate k-means (AKM)[Project]

§  FastIntersection / Additive Kernel SVMs[Project]

§  SVM[Code]

§  Ensemblelearning[Project]

§  DeepLearning[Net]

§  DeepLearning Methods for Vision[Project]

§  NeuralNetwork for Recognition of Handwritten Digits[Project]

§  Training adeep autoencoder or a classifier on MNIST digits[Project]

§  THE MNISTDATABASE of handwritten digits[Project]

§  Ersatzdeep neural networks in the cloud[Project]

§  DeepLearning [Project]

§  sparseLM :Sparse Levenberg-Marquardt nonlinear least squares in C/C++[Project]

§  Weka 3:Data Mining Software in Java[Project]

§  Invitedtalk "A Tutorial on Deep Learning" by Dr. Kai Yu (余凯)[Video]

§  CNN -Convolutional neural network class[Matlab Tool]

§  YannLeCun's Publications[Wedsite]

§  LeNet-5,convolutional neural networks[Project]

§  Training adeep autoencoder or a classifier on MNIST digits[Project]

§  DeepLearning 大牛GeoffreyE. Hinton's HomePage[Website]

§  MultipleInstance Logistic Discriminant-based Metric Learning (MildML) and LogisticDiscriminant-based Metric Learning (LDML)[Code]

§  Sparsecoding simulation software[Project]

§  VisualRecognition and Machine Learning Summer School[Software]

 

十一、目标、行为识别Object,Action Recognition

§  ActionRecognition by Dense Trajectories[Project][Code]

§  ActionRecognition Using a Distributed Representation of Pose and Appearance[Project]

§  RecognitionUsing Regions[Paper][Code]

§  2DArticulated Human Pose Estimation[Project]

§  Fast HumanPose Estimation Using Appearance and Motion via Multi-Dimensional BoostingRegression[Paper][Code]

§  EstimatingHuman Pose from Occluded Images[Paper][Code]

§  Quasi-densewide baseline matching[Project]

§  ChaLearnGesture Challenge: Principal motion: PCA-based reconstruction of motionhistograms[Project]

§  Real TimeHead Pose Estimation with Random Regression Forests[Project]

§  2D ActionRecognition Serves 3D Human Pose Estimation[Project]

§  A HoughTransform-Based Voting Framework for Action Recognition[Project]

§  MotionInterchange Patterns for Action Recognition in Unconstrained Videos[Project]

§  2Darticulated human pose estimation software[Project]

§  Learningand detecting shape models [code]

§  ProgressiveSearch Space Reduction for Human Pose Estimation[Project]

§  LearningNon-Rigid 3D Shape from 2D Motion[Project]

 

十二、图像处理:

§  DistanceTransforms of Sampled Functions[Project]

§  TheComputer Vision Homepage[Project]

§  Efficientappearance distances between windows[code]

§  ImageExploration algorithm[code]

§  MotionMagnification 运动放大 [Project]

§  BilateralFiltering for Gray and Color Images 双边滤波器 [Project]

§  A FastApproximation of the Bilateral Filter using a Signal Processing Approach [Project]

 

十三、一些实用工具:

§  EGT: aToolbox for Multiple View Geometry and Visual Servoing[Project] [Code]

§  adevelopment kit of matlab mex functions for OpenCV library[Project]

§  FastArtificial Neural Network Library[Project]

 

十四、人手及指尖检测与识别:

§  finger-detection-and-gesture-recognition [Code]

§  Hand andFinger Detection using JavaCV[Project]

§  Hand andfingers detection[Code]

 

十五、场景解释:

§  NonparametricScene Parsing via Label Transfer [Project]

 

十六、光流Opticalflow

§  Highaccuracy optical flow using a theory for warping [Project]

§  DenseTrajectories Video Description [Project]

§  SIFT Flow:Dense Correspondence across Scenes and its Applications[Project]

§  KLT: AnImplementation of the Kanade-Lucas-Tomasi Feature Tracker [Project]

§  TrackingCars Using Optical Flow[Project]

§  Secrets ofoptical flow estimation and their principles[Project]

§  implmentationof the Black and Anandan dense optical flow method[Project]

§  OpticalFlow Computation[Project]

§  BeyondPixels: Exploring New Representations and Applications for Motion Analysis[Project]

§  A Databaseand Evaluation Methodology for Optical Flow[Project]

§  opticalflow relative[Project]

§  RobustOptical Flow Estimation [Project]

§  opticalflow[Project]

 

十七、图像检索ImageRetrieval

§  Semi-SupervisedDistance Metric Learning for Collaborative Image Retrieval [Paper][code]

 

十八、马尔科夫随机场MarkovRandom Fields

§  MarkovRandom Fields for Super-Resolution [Project]

§  AComparative Study of Energy Minimization Methods for Markov Random Fields withSmoothness-Based Priors [Project]

 

十九、运动检测Motiondetection

§  MovingObject Extraction, Using Models or Analysis of Regions [Project]

§  BackgroundSubtraction: Experiments and Improvements for ViBe [Project]

§  ASelf-Organizing Approach to Background Subtraction for Visual SurveillanceApplications [Project]

§  changedetection.net:A new change detection benchmark dataset[Project]

§  ViBe - apowerful technique for background detection and subtraction in video sequences[Project]

§  BackgroundSubtraction Program[Project]

§  MotionDetection Algorithms[Project]

§  StuttgartArtificial Background Subtraction Dataset[Project]

§  ObjectDetection, Motion Estimation, and Tracking[Project]

 

Feature Detection and Description

General Libraries: 

§  VLFeat – Implementation of various featuredescriptors (including SIFT, HOG, and LBP) and covariant feature detectors(including DoG, Hessian, Harris Laplace, Hessian Laplace, Multiscale Hessian,Multiscale Harris). Easy-to-use Matlab interface. See Modern features: Software – Slides providing a demonstration ofVLFeat and also links to other software. Check also VLFeat hands-onsession training

§  OpenCV – Various implementations of modernfeature detectors and descriptors (SIFT, SURF, FAST, BRIEF, ORB, FREAK, etc.)

 

Fast Keypoint Detectors for Real-timeApplications: 

§  FAST – High-speed corner detectorimplementation for a wide variety of platforms

§  AGAST – Even faster than the FAST cornerdetector. A multi-scale version of this method is used for the BRISK descriptor(ECCV 2010).

 

Binary Descriptors for Real-TimeApplications: 

§  BRIEF – C++ code for a fast and accurateinterest point descriptor (not invariant to rotations and scale) (ECCV 2010)

§  ORB – OpenCV implementation of theOriented-Brief (ORB) descriptor (invariant to rotations, but not scale)

§  BRISK – Efficient Binary descriptor invariantto rotations and scale. It includes a Matlab mex interface. (ICCV 2011)

§  FREAK – Faster than BRISK (invariant torotations and scale) (CVPR 2012)

 

SIFT and SURF Implementations: 

§  SIFT: VLFeatOpenCVOriginalcode byDavid Lowe, GPUimplementationOpenSIFT

§  SURF: HerbertBay’s codeOpenCVGPU-SURF

 

Other Local Feature Detectors andDescriptors: 

§  VGG Affine Covariant features – Oxford code for various affinecovariant feature detectors and descriptors.

§  LIOP descriptor – Source code for the Local Intensityorder Pattern (LIOP) descriptor (ICCV 2011).

§  LocalSymmetry Features – Source code for matching of local symmetryfeatures under large variations in lighting, age, and rendering style (CVPR2012).

 

Global Image Descriptors: 

§  GIST – Matlab code for the GIST descriptor

§  CENTRIST – Global visual descriptor for scenecategorization and object detection (PAMI 2011)

 

Feature Coding and Pooling 

§  VGG Feature Encoding Toolkit – Source code for variousstate-of-the-art feature encoding methods – including Standard hard encoding,Kernel codebook encoding, Locality-constrained linear encoding, and Fisherkernel encoding.

§  SpatialPyramid Matching – Source code for feature pooling based on spatialpyramid matching (widely used for image classification)

 

Convolutional Nets and Deep Learning 

§  EBLearn – C++ Library for Energy-BasedLearning. It includes several demos and step-by-step instructions to trainclassifiers based on convolutional neural networks.

§  Torch7 – Provides a matlab-like environmentfor state-of-the-art machine learning algorithms, including a fast implementationof convolutional neural networks.

§  DeepLearning -Various links for deep learning software.

 

Part-Based Models 

§  DeformablePart-based Detector – Library provided by the authors of the originalpaper (state-of-the-art in PASCAL VOC detection task)

§  Efficient Deformable Part-Based Detector – Branch-and-Bound implementation for adeformable part-based detector.

§  AcceleratedDeformable Part Model – Efficient implementation of a method thatachieves the exact same performance of deformable part-based detectors but withsignificant acceleration (ECCV 2012).

§  Coarse-to-FineDeformable Part Model – Fast approach for deformable object detection(CVPR 2011).

§  Poselets – C++ and Matlab versions for objectdetection based on poselets.

§  Part-basedFace Detector and Pose Estimation – Implementation of a unified approachfor face detection, pose estimation, and landmark localization (CVPR 2012).

 

Attributes and Semantic Features 

§  Relative Attributes – Modified implementation of RankSVM totrain Relative Attributes (ICCV 2011).

§  Object Bank – Implementation of object banksemantic features (NIPS 2010). See also ActionBank

§  Classemes, Picodes, and Meta-class features – Software for extracting high-levelimage descriptors (ECCV 2010, NIPS 2011, CVPR 2012).

 

Large-Scale Learning 

§  Additive Kernels – Source code for fast additive kernelSVM classifiers (PAMI 2013).

§  LIBLINEAR – Library for large-scale linear SVMclassification.

§  VLFeat – Implementation for Pegasos SVM andHomogeneous Kernel map.

 

Fast Indexing and Image Retrieval 

§  FLANN – Library for performing fastapproximate nearest neighbor.

§  Kernelized LSH – Source code for KernelizedLocality-Sensitive Hashing (ICCV 2009).

§  ITQBinary codes – Code for generation of small binary codes usingIterative Quantization and other baselines such as Locality-Sensitive-Hashing(CVPR 2011).

§  INRIAImage Retrieval – Efficient code for state-of-the-art large-scaleimage retrieval (CVPR 2011).

 

Object Detection 

§  See Part-based Models and Convolutional Nets above.

§  PedestrianDetection at 100fps – Very fast and accurate pedestrian detector (CVPR2012).

§  Caltech Pedestrian Detection Benchmark – Excellent resource for pedestriandetection, with various links for state-of-the-art implementations.

§  OpenCV – Enhanced implementation ofViola&Jones real-time object detector, with trained models for facedetection.

§  Efficient Subwindow Search – Source code for branch-and-boundoptimization for efficient object localization (CVPR 2008).

 

3D Recognition 

§  Point-CloudLibrary –Library for 3D image and point cloud processing.

 

Action Recognition 

§  ActionBank – Source code for action recognitionbased on the ActionBank representation (CVPR 2012).

§  STIPFeatures –software for computing space-time interest point descriptors

§  IndependentSubspace Analysis – Look for Stacked ISA for Videos (CVPR 2011)

§  Velocity Histories of Tracked Keypoints - C++ code for activity recognitionusing the velocity histories of tracked keypoints (ICCV 2009)


 

Datasets

 

Attributes 

§  Animalswith Attributes – 30,475 images of 50 animals classes with 6pre-extracted feature representations for each image.

§  aYahooand aPascal – Attribute annotations for images collected fromYahoo and Pascal VOC 2008.

§  FaceTracer – 15,000 faces annotated with 10attributes and fiducial points.

§  PubFig – 58,797 face images of 200 people with73 attribute classifier outputs.

§  LFW – 13,233 face images of 5,749 peoplewith 73 attribute classifier outputs.

§  Human Attributes – 8,000 people with annotatedattributes. Check also this link for another dataset of humanattributes.

§  SUNAttribute Database – Large-scale scene attribute database with ataxonomy of 102 attributes.

§  ImageNet Attributes – Variety of attribute labels for theImageNet dataset.

§  Relative attributes – Data for OSR and a subset of PubFigdatasets. Check also this link for the WhittleSearch data.

§  Attribute Discovery Dataset – Images of shopping categoriesassociated with textual descriptions.

 

Fine-grained Visual Categorization 

§  Caltech-UCSD Birds Dataset – Hundreds of bird categories withannotated parts and attributes.

§  Stanford Dogs Dataset – 20,000 images of 120 breeds of dogsfrom around the world.

§  Oxford-IIITPet Dataset – 37 category pet dataset with roughly 200 imagesfor each class. Pixel level trimap segmentation is included.

§  Leeds Butterfly Dataset – 832 images of 10 species ofbutterflies.

§  Oxford Flower Dataset – Hundreds of flower categories.

 

Face Detection 

§  FDDB – UMass face detection dataset andbenchmark (5,000+ faces)

§  CMU/MIT – Classical face detection dataset.

 

Face Recognition 

§  FaceRecognition Homepage – Large collection of face recognition datasets.

§  LFW – UMass unconstrained face recognitiondataset (13,000+ face images).

§  NISTFace Homepage – includes face recognition grand challenge (FRGC),vendor tests (FRVT) and others.

§  CMUMulti-PIE –contains more than 750,000 images of 337 people, with 15 different views and 19lighting conditions.

§  FERET – Classical face recognition dataset.

§  Deng Cai’s face dataset in Matlab Format – Easy to use if you want play withsimple face datasets including Yale, ORL, PIE, and Extended Yale B.

§  SCFace – Low-resolution face dataset capturedfrom surveillance cameras.

 

Handwritten Digits 

§  MNIST – large dataset containing a trainingset of 60,000 examples, and a test set of 10,000 examples.

 

Pedestrian Detection

§  Caltech Pedestrian Detection Benchmark – 10 hours of video taken from avehicle,350K bounding boxes for about 2.3K unique pedestrians.

§  INRIAPerson Dataset – Currently one of the most popular pedestriandetection datasets.

§  ETHPedestrian Dataset – Urban dataset captured from a stereo rig mountedon a stroller.

§  TUD-BrusselsPedestrian Dataset – Dataset with image pairs recorded in an crowdedurban setting with an onboard camera.

§  PASCAL Human Detection – One of 20 categories in PASCAL VOCdetection challenges.

§  USC Pedestrian Dataset – Small dataset captured fromsurveillance cameras.

 

Generic Object Recognition 

§  ImageNet – Currently the largest visualrecognition dataset in terms of number of categories and images.

§  Tiny Images – 80 million 32x32 low resolutionimages.

§  Pascal VOC – One of the most influential visualrecognition datasets.

§  Caltech 101 / Caltech256 –Popular image datasets containing 101 and 256 object categories, respectively.

§  MIT LabelMe – Online annotation tool for buildingcomputer vision databases.

 

Scene Recognition

§  MITSUN Dataset – MIT scene understanding dataset.

§  UIUCFifteen Scene Categories – Dataset of 15 natural scene categories.

 

Feature Detection and Description 

§  VGG Affine Dataset – Widely used dataset for measuringperformance of feature detection and description. CheckVLBenchmarks for an evaluation framework.

 

Action Recognition

§  Benchmarking Activity Recognition – CVPR 2012 tutorial covering variousdatasets for action recognition.

 

RGBD Recognition 

§  RGB-D Object Dataset – Dataset containing 300 commonhousehold objects


 

posted on 2015-04-04 19:55  rongbohou  阅读(712)  评论(0编辑  收藏  举报