POJ 3468 A Simple Problem with Integers Splay
用Splay实现区间增减,查询区间和。
要对一个区间进行操作只要先把元素在序列中的位置当做键值建树,然后对l,r操作只要把l - 1 splay到根,r+1 splay到根的右子树,那么r + 1的左子树里面就有这个区间的所有的元素了。
对每个节点存一些信息,就可以很方便的处理了。
不过这题用splay写相比线段树还是差很多的。。又长又慢。。
#include <cstdio> #include <cstring> #include <cstdlib> #include <climits> using namespace std; const int maxn = 1e6 + 10; typedef long long LL; int ch[maxn][2], lazy[maxn], fa[maxn], chcnt, root, key[maxn]; int N, Q, arr[maxn]; LL sum[maxn], size[maxn], val[maxn]; void pushdown(int x) { if (lazy[x] == 0) return; for (int i = 0; i <= 1; i++) if (ch[x][i]) { int u = ch[x][i]; val[u] += lazy[x]; sum[u] += size[u] * lazy[x]; lazy[u] += lazy[x]; } lazy[x] = 0; } void pushup(int x) { sum[x] = val[x]; size[x] = 1; for (int i = 0; i <= 1; i++) if (ch[x][i]) { int u = ch[x][i]; sum[x] += sum[u]; size[x] += size[u]; } } void rotate(int x, int d) { int y = fa[x]; pushdown(y); pushdown(x); fa[ch[x][d]] = y; ch[y][d ^ 1] = ch[x][d]; if (fa[y]) ch[fa[y]][y == ch[fa[y]][1]] = x; fa[x] = fa[y]; fa[y] = x; ch[x][d] = y; pushup(x); pushup(y); } void splay(int x, int goal) { while (fa[x] != goal) { int y = fa[x], d = (x == ch[y][1]); if (fa[y] == goal) rotate(x, d ^ 1); else { int z = fa[y], d1 = (y == ch[z][1]); if (d == d1) { rotate(y, d ^ 1); rotate(x, d ^ 1); } else { rotate(x, d ^ 1); rotate(x, d1 ^ 1); } } } if (goal == 0) root = x; } int access(int v) { int u = root; while (u != 0 && key[u] != v) { pushdown(u); u = ch[u][v > key[u]]; } return u; } int accessSeg(int l, int r) { int t = access(l - 1), t1 = access(r + 1); splay(t, 0); splay(t1, root); return ch[ch[root][1]][0]; } void update(int l, int r, int addv) { int u = accessSeg(l, r); lazy[u] += addv; val[u] += addv; sum[u] += size[u] * addv; } LL query(int l, int r) { int u = accessSeg(l, r); return sum[u]; } int newNode(int &r, int father, int v, int k) { r = ++chcnt; key[r] = k; fa[r] = father; val[r] = sum[r] = v; size[r] = 1; lazy[r] = 0; ch[r][0] = ch[r][1] = 0; return r; } void build(int l, int r, int &rt, int father) { if (l > r) return; int mid = l + r >> 1; newNode(rt, father, arr[mid], mid); if (l == r) return; build(l, mid - 1, ch[rt][0], rt); build(mid + 1, r, ch[rt][1], rt); pushup(rt); } int main() { char cmd; int l, r, cp; while (scanf("%d%d", &N, &Q) != EOF) { chcnt = 0; arr[0] = arr[N + 1] = 0; for (int i = 1; i <= N; i++) { scanf("%d", &arr[i]); } build(0, N + 1, root, 0); for (int i = 1; i <= Q; i++) { scanf(" %c%d%d", &cmd, &l, &r); if (cmd == 'C') { scanf("%d", &cp); update(l, r, cp); } else { printf("%I64d\n", query(l, r)); } } } return 0; }