POJ 2761 Feed the dogs 基础Treap
同样是插入和寻找第k大,这里因为区间不存在包含的情况,所以可以现将区间排序然后直接搞就行了。如果存在包含的情况那就只能上主席树或者是莫队算法来搞了。
#include <cstdio> #include <cstring> #include <algorithm> #include <iostream> #include <cstdlib> using namespace std; struct Node { Node *ch[2]; int rkey, size, val; Node(int val) : val(val), size(1) { rkey = rand(); ch[0] = ch[1] = NULL; } void maintain() { size = 1; if (ch[0] != NULL) size += ch[0]->size; if (ch[1] != NULL) size += ch[1]->size; } }; void rotate(Node *&x, int d) { Node *k = x->ch[d ^ 1]; x->ch[d ^ 1] = k->ch[d]; k->ch[d] = x; x->maintain(); k->maintain(); x = k; } void insert(Node *&o, int x) { if (o == NULL) o = new Node(x); else { int d = x > o->val; insert(o->ch[d], x); if (o->ch[d]->rkey > o->rkey) { rotate(o, d ^ 1); } } o->maintain(); } void remove(Node *&o, int x) { if (o->val == x) { if (o->ch[0] == NULL || o->ch[1] == NULL) { Node *k = o; if (o->ch[0] == NULL) o = o->ch[1]; else o = o->ch[0]; delete k; } else { int d = o->ch[0]->rkey > o->ch[1]->rkey; rotate(o, d); remove(o->ch[d], x); } } else { int d = x > o->val; remove(o->ch[d], x); } } int findkth(Node *o, int k) { if (o == NULL || k > o->size || k <= 0) return 0; int lsize = o->ch[0] == NULL ? 0 : o->ch[0]->size; if (k <= lsize) return findkth(o->ch[0], k); else if (k == lsize + 1) return o->val; else return findkth(o->ch[1], k - lsize - 1); } void remove_tree(Node *&o) { if (o == NULL) return; if (o->ch[0] != NULL) remove_tree(o->ch[0]); if (o->ch[1] != NULL) remove_tree(o->ch[1]); delete(o); o = NULL; } struct Seg { int l, r, k, id; Seg(int l, int r, int k, int id) : l(l), r(r), k(k), id(id) {} Seg() {} bool operator < (const Seg &x) const { if (r == x.r) return l < x.l; return r < x.r; } }; const int maxn = 1e6 + 10; Seg query[maxn]; Node *treap; int ans[maxn], n, m, a[maxn]; int main() { while (scanf("%d%d", &n, &m) != EOF) { for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); } for (int i = 1; i <= m; i++) { int l, r, k; scanf("%d%d%d", &l, &r, &k); query[i] = Seg(l, r, k, i); } sort(query + 1, query + 1 + m); int nowl = 1, nowr = 1; remove_tree(treap); for (int i = 1; i <= m; i++) { while (nowr <= query[i].r) { insert(treap, a[nowr++]); } while (nowl < query[i].l) { remove(treap, a[nowl++]); } ans[query[i].id] = findkth(treap, query[i].k); } for (int i = 1; i <= m; i++) printf("%d\n", ans[i]); } return 0; }