ZOJ 3497 Mistwald 矩阵
利用可达矩阵的幂来判断是否可达
#include <cstdio> #include <cstring> #include <algorithm> #include <queue> #include <stack> #include <map> #include <set> #include <climits> #include <iostream> #include <string> using namespace std; #define MP make_pair #define PB push_back typedef long long LL; typedef unsigned long long ULL; typedef vector<int> VI; typedef pair<int, int> PII; typedef pair<double, double> PDD; const int INF = INT_MAX / 3; const double eps = 1e-8; const LL LINF = 1e17; const LL MOD = LINF; const double DINF = 1e60; const int maxn = 30; struct Matrix { int n, m; LL data[maxn][maxn]; Matrix(int n = 0, int m = 0): n(n), m(m) { memset(data, 0, sizeof(data)); } void print() { for(int i = 1; i <= n; i++) { for(int j = 1; j <= m; j++) { cout << data[i][j] << " "; } cout << endl; } } }; Matrix operator * (Matrix a, Matrix b) { Matrix ret(a.n, b.m); for(int i = 1; i <= a.n; i++) { for(int j = 1; j <= b.m; j++) { for(int k = 1; k <= a.m; k++) { ret.data[i][j] += a.data[i][k] * b.data[k][j]; ret.data[i][j] %= MOD; } } } return ret; } Matrix operator + (Matrix a, Matrix b) { for(int i = 1; i <= a.n; i++) { for(int j = 1; j <= a.m; j++) { a.data[i][j] += b.data[i][j]; a.data[i][j] %= MOD; } } return a; } Matrix operator * (int p, Matrix mat) { for(int i = 1; i <= mat.n; i++) { for(int j = 1; j <= mat.m; i++) { mat.data[i][j] *= p; mat.data[i][j] %= MOD; } } } Matrix pow(Matrix mat, LL p) { if(p == 0) { Matrix ret(mat.n, mat.m); for(int i = 1; i <= mat.n; i++) ret.data[i][i] = 1; return ret; } if(p == 1) return mat; Matrix ret = pow(mat * mat, p / 2); if(p & 1) ret = ret * mat; return ret; } int n, m; int main() { int T; scanf("%d", &T); while(T--) { scanf("%d%d", &n, &m); Matrix mat(n * m, n * m); for(int i = 1; i <= n; i++) { for(int j = 1; j <= m; j++) { int nowx = i - 1, nowy = j - 1, nx, ny; char tmp; scanf(" %c", &tmp); for(int k = 0; k < 4; k++) { if(k) scanf(" %c", &tmp); scanf("(%d,%d)", &nx, &ny); nx--; ny--; if(i == n && j == m) continue; mat.data[nowx * m + nowy + 1][nx * m + ny + 1] = 1; } scanf(" %c", &tmp); } } int Q; scanf("%d", &Q); while(Q--) { int K; scanf("%d", &K); Matrix ret = pow(mat, K); if(ret.data[1][n * m] == 0) puts("False"); else { int cnt = 0; for(int i = 1; i < n * m; i++) { if(ret.data[1][i] != 0) cnt++; } if(cnt == 0) puts("True"); else puts("Maybe"); } } puts(""); } return 0; }