POJ 3693 Maximum repetition substring 后缀数组
论文里面的神题,题意大概是找出当前字符串中的一个子串,使得这个子串由N个字符串循环构成,输出N最大的子串,如果有多输出字典序最小的一个。
解决方法感觉很犀利。。
首先,对于循环节长度为L的子串,必然有这个子串会经过str[0],str[L],str[2*L]...中的任意两个字符,也就是必然会经过str[n*L],str[n*L+L],n为某个值的情况,随便画两个就可以看出来。。(不过感觉很难想到啊。。)
知道了这个性质之后,就可以枚举L,然后找到最大的重复次数了。。
这里复杂度为N+N/2+N/3+....N/N ~ O(Nlog(N)), 顺便记录一下可能出现的长度。
然后根据可能长度,和sa的顺序来找出字典序最小解就好了。。
一开始无限RE,后来发现是DC3算法需要3倍空间忘记考虑了,真是逗比
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int maxn = 1e6 + 10; //以下是DC3算法求后缀数组 #define F(x) ((x) / 3 + ((x) % 3 == 1 ? 0 : tb)) #define G(x) ((x) < tb ? (x) * 3 + 1 : ((x) - tb) * 3 + 2) int wa[maxn], wb[maxn], wv[maxn], ws[maxn]; int c0(int *r, int a, int b) { return r[a] == r[b] && r[a + 1] == r[b + 1] && r[a + 2] == r[b + 2]; } int c12(int k, int *r, int a, int b) { if (k == 2) return r[a] < r[b] || r[a] == r[b] && c12(1, r, a + 1, b + 1); else return r[a] < r[b] || r[a] == r[b] && wv[a + 1] < wv[b + 1]; } void sort(int *r, int *a, int *b, int n, int m) { int i; for (i = 0; i < n; i++) wv[i] = r[a[i]]; for (i = 0; i < m; i++) ws[i] = 0; for (i = 0; i < n; i++) ws[wv[i]]++; for (i = 1; i < m; i++) ws[i] += ws[i - 1]; for (i = n - 1; i >= 0; i--) b[--ws[wv[i]]] = a[i]; } void dc3(int *r, int *sa, int n, int m) { int i, j, *rn = r + n, *san = sa + n, ta = 0, tb = (n + 1) / 3, tbc = 0, p; r[n] = r[n + 1] = 0; for (i = 0; i < n; i++) if (i % 3 != 0) wa[tbc++] = i; sort(r + 2, wa, wb, tbc, m); sort(r + 1, wb, wa, tbc, m); sort(r, wa, wb, tbc, m); for (p = 1, rn[F(wb[0])] = 0, i = 1; i < tbc; i++) rn[F(wb[i])] = c0(r, wb[i - 1], wb[i]) ? p - 1 : p++; if (p < tbc) dc3(rn, san, tbc, p); else for (i = 0; i < tbc; i++) san[rn[i]] = i; for (i = 0; i < tbc; i++) if (san[i] < tb) wb[ta++] = san[i] * 3; if (n % 3 == 1) wb[ta++] = n - 1; sort(r, wb, wa, ta, m); for (i = 0; i < tbc; i++) wv[wb[i] = G(san[i])] = i; for (i = 0, j = 0, p = 0; i < ta && j < tbc; p++) sa[p] = c12(wb[j] % 3, r, wa[i], wb[j]) ? wa[i++] : wb[j++]; for (; i < ta; p++) sa[p] = wa[i++]; for (; j < tbc; p++) sa[p] = wb[j++]; } int Rank[maxn], height[maxn]; void calheight(int *r, int *sa, int n) { int i, j, k = 0; for (i = 1; i <= n; i++) Rank[sa[i]] = i; for (i = 0; i < n; height[Rank[i++]] = k) for (k ? k-- : 0, j = sa[Rank[i] - 1]; r[i + k] == r[j + k]; k++); } #undef F #undef G int sa[maxn], str[maxn], len, n, minv[maxn][30], val[maxn], vsz; char buf[maxn]; void init_RMQ() { for(int i = 0; i <= len; i++) { minv[i][0] = height[i]; } for(int j = 1; (1 << j) <= len + 1; j++) { for(int i = 0; i + (1 << j) - 1 <= len; i++) { minv[i][j] = min(minv[i][j - 1], minv[i + (1 << (j - 1))][j - 1]); } } } int query(int ql, int qr) { if(ql > qr) swap(ql, qr); ql++; int kp = 0; while((1 << (kp + 1)) <= qr - ql + 1) { kp++; } return min(minv[ql][kp], minv[qr - (1 << kp) + 1][kp]); } int main() { int kase = 1; while(gets(buf), buf[0] != '#') { len = strlen(buf); vsz = 0; for(int i = 0; i < len; i++) { str[i] = buf[i]; } str[len] = 0; dc3(str, sa, len + 1, 200); calheight(str, sa, len); init_RMQ(); int maxstep = 0; for(int L = 1; L <= len; L++) { for(int i = 0; i < len && i + L < len; i += L) { int s1 = query(Rank[i], Rank[i + L]); int step = s1 / L + 1; if(i - (L - s1 % L) >= 0) { s1 = query(Rank[i - (L - s1 % L)], Rank[i - (L - s1 % L) + L]); if(s1 / L + 1 > step) step++; } if(step > maxstep) { maxstep = step; vsz = 0; } if(step == maxstep) val[vsz++] = L; } } //printf("maxstep is %d\n", maxstep); printf("Case %d: ", kase++); if(maxstep <= 1) { int minval = 500; for(int i = 0; i < len; i++) minval = min(minval, (int)buf[i]); putchar(minval); puts(""); continue; } bool found = false; for(int i = 0; i <= len; i++) { for(int j = 0; j < vsz; j++) { if(sa[i] + val[j] <= len && query(i, Rank[sa[i] + val[j]]) / val[j] + 1 == maxstep) { for(int k = 0; k < maxstep * val[j]; k++) { putchar(buf[sa[i] + k]); } puts(""); found = true; break; } } if(found) break; } } return 0; }