【TensorFlow】使用TensorFlow Lite Model Maker训练模型

基础LENET5模型

import tensorflow as tf
from keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.optimizers import RMSprop

train_dir="E://PycharmProjects//LearingImageData//DataSets//train"
validation_dir="E://PycharmProjects//LearingImageData//DataSets//var"

train_datagen= ImageDataGenerator(
    rescale=1./255,
    rotation_range=40,#随机旋转,-40°到40°
    width_shift_range=0.2,#平移宽度
    height_shift_range=0.2,#平移高度
    shear_range=0.2,#错切0-1
    zoom_range=0.2,#放大倍数
    horizontal_flip=True,#翻转
    fill_mode='nearest')   #统一化处理
train_generator=train_datagen.flow_from_directory(
    train_dir,
    target_size=(300,300),
    batch_size=128,#每次抽出128张图片进行训练
    class_mode='categorical'#如果只有两类,用binary,多个类别用categorical
)

test_datagen= ImageDataGenerator(rescale=1./255)   #统一化处理
validation_generator=test_datagen.flow_from_directory(
    validation_dir,
    target_size=(300,300),
    batch_size=128,#每次抽出128张图片进行训练
    class_mode='binary'#如果只有两类,用binary,多个类别用categorical
)

#搭建一个简单的CNN模型
model= tf.keras.models.Sequential([
    tf.keras.layers.Conv2D(16,(3,3),activation='relu',
                           input_shape=(300,300,3)),
    tf.keras.layers.MaxPool2D(2,2),
    tf.keras.layers.Conv2D(32,(3,3),activation='relu'),#每个卷积层后面都有一个最大池化层
    tf.keras.layers.MaxPool2D(2,2),
    tf.keras.layers.Conv2D(64,(3,3),activation='relu'),
    tf.keras.layers.MaxPool2D(2,2),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(512,activation='relu'),
    tf.keras.layers.Dense(1,activation='sigmoid')#3类,0,1,2
])

#model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
 #             optimizer=RMSprop(lr=0.001),
  #            metrics=['accuracy'])
model.compile(optimizer='adam',
              loss='binary_crossentropy',
              metrics=['accuracy'])
model.summary()
history=model.fit(
    train_generator,
    epochs=20,
    validation_data=validation_generator,
    steps_per_epoch=2,
    validation_steps=1,
    verbose=2)
model.save("E://PycharmProjects//LearingImageData//DataSets//finalModel")

基于MobileNet的改进模型(自动保存准确度大于0.8的模型并转化成tflite)

import tensorflow as tf
import keras
import keras_applications.mobilenet_v2 as mobilenet
import numpy as np


def get_model():
    # 获取base-model
    base_model = mobilenet.MobileNetV2(include_top=False,
                                       weights='imagenet',
                                       input_shape=(224, 224, 3),
                                       backend=keras.backend,
                                       layers=keras.layers,
                                       models=keras.models,
                                       utils=keras.utils)
    # 冻结base-model所有参数
    for layer in base_model.layers:
        layer.trainable = False
    # global average pooling & classification layer
    gm = keras.layers.GlobalAveragePooling2D()(base_model.output)
    fc = keras.layers.Dense(units=3,
                            activation='softmax',
                            kernel_regularizer=tf.keras.regularizers.l1(0.005))(gm)
    # define model
    model = keras.models.Model(base_model.input, fc, name='zc_classifier')
    return model


def get_train_input():
    train_image = keras.preprocessing.image.ImageDataGenerator(featurewise_center=False, samplewise_center=False,
                                                               featurewise_std_normalization=False,
                                                               samplewise_std_normalization=False, zca_whitening=False,
                                                               zca_epsilon=1e-06, rotation_range=0.1,
                                                               width_shift_range=0.1, height_shift_range=0.1,
                                                               shear_range=0.0,
                                                               zoom_range=0.1, channel_shift_range=0.0,
                                                               fill_mode='nearest', cval=0.0, horizontal_flip=True,
                                                               vertical_flip=False, rescale=None,
                                                               preprocessing_function=lambda
                                                                   x: mobilenet.preprocess_input(x,
                                                                                                 data_format="channels_last"),
                                                               data_format="channels_last")

    train_gen = train_image.flow_from_directory(r'E:\PycharmProjects\LearingImageData\DataSets\train',
                                                target_size=(224, 224),
                                                batch_size=32,
                                                interpolation="bilinear")
    for img, lab in train_gen:
        classes = np.argmax(lab, axis=-1)
        lab[classes == 0] = [0.85, 0.075, 0.075]
        lab[classes == 1] = [0.05, 0.8, 0.15]
        lab[classes == 2] = [0.05, 0.15, 0.8]
        yield img, lab


def get_test_input():
    test_image = keras.preprocessing.image.ImageDataGenerator(preprocessing_function=
                                                              lambda x: mobilenet.preprocess_input(x,
                                                                                                   data_format="channels_last"),
                                                              data_format="channels_last", )
    test_gen = test_image.flow_from_directory(r'E:\PycharmProjects\LearingImageData\DataSets\var',
                                              target_size=(224, 224),
                                              batch_size=1,
                                              shuffle=False,
                                              interpolation="bilinear", )
    return test_gen


def custom_loss(y_true, y_pred):
    class_weight = [0.33, 0.33, 0.34]  #配权重 数量越多,权重越低
    # classes = tf.argmax(y_true, axis=1)
    loss = 0.0
    for i in range(3):
        loss += (y_true[:, i] * tf.math.log(y_pred[:, i]) +
                 (1 - y_true[:, i]) * tf.math.log(1 - y_pred[:, i])) * class_weight[i]
    return -tf.reduce_mean(loss)


def train(model: tf.keras.Model, train_gen, test_gen, save_function):
    adam = keras.optimizers.Adam(0.01)#
    model.compile(loss=custom_loss, optimizer=adam, metrics=['accuracy'])
    model.fit_generator(train_gen,
                        epochs=8,
                        steps_per_epoch=6,
                        validation_data=test_gen,
                        callbacks=[save_function])
    model.save('./zc.h5')


def test(model: tf.keras.Model, test_gen):
    # import numpy as np
    # adam = keras.optimizers.Adam(0.001)
    # model.compile(loss="categorical_crossentropy", optimizer=adam, metrics=['accuracy'])
    # model.load_weights('./zc.h5')
    print(model.evaluate_generator(test_gen, verbose=1))
    # for img, lab in test_gen:
    #     print(np.argmax(lab[0]), np.argmax(model.predict(img)))


class Save(keras.callbacks.Callback):
    def __init__(self):
        super(Save, self).__init__()
        self.max_acc = 0.0

    def on_epoch_begin(self, epoch, logs=None):
        pass

    def on_epoch_end(self, epoch, logs=None):
        self.val_acc = logs["accuracy"]
        if epoch != 0:
            if self.val_acc > self.max_acc and self.val_acc > 0.8:
                model.save("kears_model_" + str(epoch) + "_acc=" + str(self.val_acc) + ".h5")
                self.max_acc = self.val_acc
                converter = tf.lite.TFLiteConverter.from_keras_model(model)
                converter.experimental_new_converter = True
                tflite_model = converter.convert()
                open("converted_model_"+str(self.val_acc)+".tflite", "wb").write(tflite_model)


if __name__ == "__main__":
    save_function = Save()
    model = get_model()
    train_gen = get_train_input()
    test_gen = get_test_input()
    train(model, train_gen, test_gen, save_function)
    # test(model, test_gen)

使用TensorFlow Lite Model Maker训练模型

pip install -q tflite-model-maker
import os

import numpy as np

import tensorflow as tf
assert tf.__version__.startswith('2')

from tflite_model_maker import configs
from tflite_model_maker import ExportFormat
from tflite_model_maker import image_classifier
from tflite_model_maker import ImageClassifierDataLoader
from tflite_model_maker import model_spec

import matplotlib.pyplot as plt

image_path='E://PycharmProjects//LearingImageData//DataSets//train'
model_dir='E://PycharmProjects//MLTest//tflite_model'

data = ImageClassifierDataLoader.from_folder(image_path)

train_data, rest_data = data.split(0.8)
validation_data, test_data = rest_data.split(0.5)

model = image_classifier.create(train_data, validation_data=validation_data)

model.summary()

loss,accuracy = model.evaluate(test_data)

model.export(export_dir=model_dir)

该卷积神经网络基于EfficientNet-Lite0,效果比前面两个好得多

 

posted @ 2021-03-09 18:50  巴塞罗那的余晖  阅读(1383)  评论(0编辑  收藏  举报
//雪花飘落效果