随笔 - 31  文章 - 2  评论 - 115  阅读 - 50万

ML 感知机(Perceptrons)

感知机

Perceptrons

 

学习Hinton神经网络公开课的学习笔记

https://class.coursera.org/neuralnets-2012-001

1 感知机历史

    在19世纪60年代由Frank Rosenblatt提出,是神经网络和支持向量机的基础。

2 模型表示

    在hinton的课件里面给出的是Binary threshold neurons,y取值是{0,1}

在《统计学习方法》中给出的模型公式:

   

几何解释:线性方程

 

对应于特征空间中的一个超平面S

3 代价函数 cost function

考虑输入空间中任一点到超平面的距离:

    

误分类点到超平面的距离:

   

所有误分类点到超平面总距离:

   

不考虑 ,得到感知机的代价函数:

   

这里M为误分类点集合。

4 感知机学习算法

4.1梯度下降法

   

更新参数:

   

注意这里与线性回归逻辑回归等不同在于,更新参数时,是误分类点集,而不是全集。

 

4.2对偶形式

有上面的原始形式

   

假设初始值w,b为0,最后学习得到的参数可表示为:

   

,N为总样本个数。

感知机模型

梯度更新算法变为:

  1. 在训练集中选取数据
  2. 如果

  3. 转至(2)直到没有误分类数据

 

在对偶形式中,为了方便,可以将训练集中实例间的内积先计算出来用矩阵形式存储,这个矩阵也就是所谓的Gram矩阵

5 感知机的缺陷

这些限制来源于所使用的特征,感知机不会自动学习特征,必须通过人类手工设置特征进行学习,所以他的能力也就和特征有关。还有感知机是一个线性模型,他无法解决非线性问题。下面是

posted on   robert_ai  阅读(1247)  评论(0编辑  收藏  举报
编辑推荐:
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
阅读排行:
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 分享 3 个 .NET 开源的文件压缩处理库,助力快速实现文件压缩解压功能!
· Ollama——大语言模型本地部署的极速利器
· DeepSeek如何颠覆传统软件测试?测试工程师会被淘汰吗?
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

点击右上角即可分享
微信分享提示