面试题 31: 求子数组的最大和
题目:输入一个整形数组,数组里有正数也有负数。数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。求所有子数组的和的最大值。要求时间复杂度为O(n)。
例如输入的数组为1, -2, 3, 10, -4, 7, 2, -5,和最大的子数组为3, 10, -4, 7, 2,因此输出为该子数组的和18。
分析:本题最初为2005年浙江大学计算机系的考研题的最后一道程序设计题,在2006年里包括google在内的很多知名公司都把本题当作面试题。由于本题在网络中广为流传,本题也顺利成为2006年程序员面试题中经典中的经典。
如果不考虑时间复杂度,我们可以枚举出所有子数组并求出他们的和。不过非常遗憾的是,由于长度为n的数组有O(n2)个子数组;而且求一个长度为n的数组的和的时间复杂度为O(n)。因此这种思路的时间是O(n3)。
很容易理解,当我们加上一个正数时,和会增加;当我们加上一个负数时,和会减少。如果当前得到的和是个负数,那么这个和在接下来的累加中应该抛弃并重新清零,不然的话这个负数将会减少接下来的和。基于这样的思路,我们可以写出如下代码。
我想这道题目就是杭电的 hdu 1003 Max Sum . 所以我就索性再写一遍杭电的 1003; 动态规划
#include <iostream> #include <string> #include <cstring> #include <cstdlib> #include <cstdio> #include <cmath> #include <vector> #include <stack> #include <deque> #include <queue> #include <bitset> #include <list> #include <map> #include <set> #include <iterator> #include <algorithm> #include <functional> #include <utility> #include <sstream> #include <climits> #include <cassert> #define BUG puts("here!!!"); using namespace std; int main() { int T; scanf("%d", &T); int n, temp, s, f, i, v, sum = 0, maxn; for(int e = 1; e <= T; e++) { int n, temp, s, f, i, v, sum = 0; maxn = 0x80000000; scanf("%d", &n); for(temp = 1, i = 1; i <= n; i++) { scanf("%d", &v); sum += v; if(sum > maxn) { maxn = sum; s = temp; f = i; } if(sum < 0) { temp = i+1; sum = 0; } } printf("Case %d:\n%d %d %d\n", e, maxn, s, f); if(e < T) printf("\n"); } return 0; }