RPC之远程过程调用
一. 简介
将一个函数运行在远程计算机上并且等待获取那里的结果,这个称作远程过程调用(Remote Procedure Call)或者 RPC。
RPC是一个计算机通信协议。
1. 类比:
将计算机服务运行理解为厨师做饭,厨师想做一个小葱拌豆腐,厨师需要洗小葱、切豆腐、调汁、凉拌。他一个人完成所有的事,如同古老的集中式应用,一台计算机做所有的事。 制作小葱拌豆腐{ 厨师>洗小葱>切豆腐>凉拌 } rpc应用场景 而如今,饭店做大了,有钱了,专职分工来干活,不再是厨师单打独斗,备菜师傅准备小葱、豆腐,切菜师傅切小葱、豆腐,厨师只负责调味,完成食品。 制作小葱拌豆腐{ 备菜师>洗菜 切菜师>切菜 厨师>调味 } 此时一件事好多人在做,厨师就得和其他人沟通,通知备菜、洗菜师傅的这个动作就是远程过程调用(RPC)。 这个过程在计算机系统中,一个电商的下单过程,涉及物流、支付、库存、红包等多个系统,多个系统又在多个服务器上,由不同的技术团队负责,整个下单过程,需要所有团队进行远程调用。 下单{ 库存>减少库存 支付>扣款 红包>减免红包 物流>生成订单 }
二. 到底什么是rpc
rpc指的是在计算机A上的进程,调用另外一台计算机B的进程,A上的进程被挂起,B上的被调用进程开始执行后,产生返回值给A,A继续执行。
调用方可以通过参数将信息传递给被调用方,而后通过返回结果得到信息,这个过程对于开发人员来说是透明的如同厨师一样,服务员把菜单给后厨,厨师告诉洗菜人,备菜人,开始工作,完成工作后,整个过程对于服务员是透明的,他完全不用管后厨是怎么把菜做好的。
由于服务在不同的机器上,远程调用必经网络通信,调用服务必须写一坨网络通信代码,很容易出错且很复杂,因此就出现了RPC框架。
阿里巴巴的 Dubbo java
新浪的 Motan java
谷歌的 gRPC 多语言
Apache thrift 多语言
rpc封装了数据的序列化,反序列化,以及传输协议
1. python实现RPC
利用RabbitMQ构建一个RPC系统,包含了客户端和RPC服务器,依旧使用pika模块
2. Callback queue 回调队列
一个客户端向服务器发送请求,服务器端处理请求后,将其处理结果保存在一个存储体中。而客户端为了获得处理结果,那么客户在向服务器发送请求时,同时发送一个回调队列地址reply_to。
3. Correlation id 关联标识
一个客户端可能会发送多个请求给服务器,当服务器处理完后,客户端无法辨别在回调队列中的响应具体和那个请求时对应的。为了处理这种情况,客户端在发送每个请求时,同时会附带一个独有correlation_id属性,这样客户端在回调队列中根据correlation_id字段的值就可以分辨此响应属于哪个请求。
客户端发送请求:某个应用将请求信息交给客户端,然后客户端发送RPC请求,在发送RPC请求到RPC请求队列时,客户端至少发送带有reply_to以及correlation_id两个属性的信息
服务器端工作流: 等待接受客户端发来RPC请求,当请求出现的时候,服务器从RPC请求队列中取出请求,然后处理后,将响应发送到reply_to指定的回调队列中
客户端接受处理结果: 客户端等待回调队列中出现响应,当响应出现时,它会根据响应中correlation_id字段的值,将其返回给对应的应用
(1). 过程
1.启动rpc客户端,等待接收数据到来,来了之后就进行处理,再将结果丢进队列
2.启动rpc服务端,发起请求
(2). rpc_server.py
import pika import uuid class FibonacciRpcClient(object): def __init__(self): # 客户端启动时,创建回调队列,会开启会话用于发送RPC请求以及接受响应 # 建立连接,指定服务器的ip地址 self.connection = pika.BlockingConnection(pika.ConnectionParameters( host='192.168.119.10')) # 建立一个会话,每个channel代表一个会话任务 self.channel = self.connection.channel() # 声明回调队列,再次声明的原因是,服务器和客户端可能先后开启,该声明是幂等的,多次声明,但只生效一次 #exclusive=True 参数是指只对首次声明它的连接可见 #exclusive=True 会在连接断开的时候,自动删除 result = self.channel.queue_declare(exclusive=True) # 将次队列指定为当前客户端的回调队列 self.callback_queue = result.method.queue # 客户端订阅回调队列,当回调队列中有响应时,调用`on_response`方法对响应进行处理; self.channel.basic_consume(self.on_response, no_ack=True, queue=self.callback_queue) # 对回调队列中的响应进行处理的函数 def on_response(self, ch, method, props, body): if self.corr_id == props.correlation_id: self.response = body # 发出RPC请求 # 例如这里服务端就是一个切菜师傅,菜切好了,需要传递给洗菜师傅,这个过程是发送rpc请求 def call(self, n): # 初始化 response self.response = None # 生成correlation_id 关联标识,通过python的uuid库,生成全局唯一标识ID,保证时间空间唯一性 self.corr_id = str(uuid.uuid4()) # 发送RPC请求内容到RPC请求队列`s14rpc`,同时发送的还有`reply_to`和`correlation_id` self.channel.basic_publish(exchange='', routing_key='s14rpc', properties=pika.BasicProperties( reply_to=self.callback_queue, correlation_id=self.corr_id, ), body=str(n)) while self.response is None: self.connection.process_data_events() return int(self.response) # 建立客户端 fibonacci_rpc = FibonacciRpcClient() # 发送RPC请求,丢进rpc队列,等待客户端处理完毕,给与响应 print("发送了请求sum(99)") response = fibonacci_rpc.call(99) print("得到远程结果响应%r" % response)
(3). rpc_client.py
import pika # 建立连接,服务器地址为localhost,可指定ip地址 connection = pika.BlockingConnection(pika.ConnectionParameters( host='192.168.119.10')) # 建立会话 channel = connection.channel() # 声明RPC请求队列 channel.queue_declare(queue='s14rpc') # 模拟一个进程,例如切菜师傅,等着洗菜师傅传递数据 def sum(n): n+=100 return n # 对RPC请求队列中的请求进行处理 def on_request(ch, method, props, body): print(body,type(body)) n = int(body) print(" 正在处理sum(%s)" % n) # 调用数据处理方法 response = sum(n) # 将处理结果(响应)发送到回调队列 ch.basic_publish(exchange='', # reply_to代表回复目标 routing_key=props.reply_to, # correlation_id(关联标识):用来将RPC的响应和请求关联起来。 properties=pika.BasicProperties(correlation_id= \ props.correlation_id), body=str(response)) ch.basic_ack(delivery_tag=method.delivery_tag) # 负载均衡,同一时刻发送给该服务器的请求不超过一个 channel.basic_qos(prefetch_count=1) channel.basic_consume(on_request, queue='s14rpc') print("等待接收rpc请求") #开始消费 channel.start_consuming()