RPC之远程过程调用

一. 简介

将一个函数运行在远程计算机上并且等待获取那里的结果,这个称作远程过程调用(Remote Procedure Call)或者 RPC。

RPC是一个计算机通信协议。

1. 类比:

将计算机服务运行理解为厨师做饭,厨师想做一个小葱拌豆腐,厨师需要洗小葱、切豆腐、调汁、凉拌。他一个人完成所有的事,如同古老的集中式应用,一台计算机做所有的事。
​
制作小葱拌豆腐{
    厨师>洗小葱>切豆腐>凉拌
}
rpc应用场景

而如今,饭店做大了,有钱了,专职分工来干活,不再是厨师单打独斗,备菜师傅准备小葱、豆腐,切菜师傅切小葱、豆腐,厨师只负责调味,完成食品。
​
制作小葱拌豆腐{
    备菜师>洗菜
    切菜师>切菜
    厨师>调味
}
此时一件事好多人在做,厨师就得和其他人沟通,通知备菜、洗菜师傅的这个动作就是远程过程调用(RPC)。

这个过程在计算机系统中,一个电商的下单过程,涉及物流、支付、库存、红包等多个系统,多个系统又在多个服务器上,由不同的技术团队负责,整个下单过程,需要所有团队进行远程调用。

下单{
    库存>减少库存
    支付>扣款
    红包>减免红包
    物流>生成订单
}
View Code

二. 到底什么是rpc

rpc指的是在计算机A上的进程,调用另外一台计算机B的进程,A上的进程被挂起,B上的被调用进程开始执行后,产生返回值给A,A继续执行。

调用方可以通过参数将信息传递给被调用方,而后通过返回结果得到信息,这个过程对于开发人员来说是透明的如同厨师一样,服务员把菜单给后厨,厨师告诉洗菜人,备菜人,开始工作,完成工作后,整个过程对于服务员是透明的,他完全不用管后厨是怎么把菜做好的。

由于服务在不同的机器上,远程调用必经网络通信,调用服务必须写一坨网络通信代码,很容易出错且很复杂,因此就出现了RPC框架。

阿里巴巴的   Dubbo       java
新浪的   Motan java
谷歌的  gRPC 多语言
Apache thrift 多语言
rpc封装了数据的序列化,反序列化,以及传输协议

1. python实现RPC

利用RabbitMQ构建一个RPC系统,包含了客户端和RPC服务器,依旧使用pika模块

2. Callback queue 回调队列

一个客户端向服务器发送请求,服务器端处理请求后,将其处理结果保存在一个存储体中。而客户端为了获得处理结果,那么客户在向服务器发送请求时,同时发送一个回调队列地址reply_to。

3. Correlation id 关联标识

一个客户端可能会发送多个请求给服务器,当服务器处理完后,客户端无法辨别在回调队列中的响应具体和那个请求时对应的。为了处理这种情况,客户端在发送每个请求时,同时会附带一个独有correlation_id属性,这样客户端在回调队列中根据correlation_id字段的值就可以分辨此响应属于哪个请求。

客户端发送请求:某个应用将请求信息交给客户端,然后客户端发送RPC请求,在发送RPC请求到RPC请求队列时,客户端至少发送带有reply_to以及correlation_id两个属性的信息

服务器端工作流: 等待接受客户端发来RPC请求,当请求出现的时候,服务器从RPC请求队列中取出请求,然后处理后,将响应发送到reply_to指定的回调队列中

客户端接受处理结果: 客户端等待回调队列中出现响应,当响应出现时,它会根据响应中correlation_id字段的值,将其返回给对应的应用

(1). 过程

1.启动rpc客户端,等待接收数据到来,来了之后就进行处理,再将结果丢进队列
2.启动rpc服务端,发起请求

(2). rpc_server.py

import pika
import uuid
class FibonacciRpcClient(object):
    def __init__(self):
        # 客户端启动时,创建回调队列,会开启会话用于发送RPC请求以及接受响应
        # 建立连接,指定服务器的ip地址
        self.connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='192.168.119.10'))
        # 建立一个会话,每个channel代表一个会话任务
        self.channel = self.connection.channel()

        # 声明回调队列,再次声明的原因是,服务器和客户端可能先后开启,该声明是幂等的,多次声明,但只生效一次
        #exclusive=True 参数是指只对首次声明它的连接可见
        #exclusive=True 会在连接断开的时候,自动删除
        result = self.channel.queue_declare(exclusive=True)
        # 将次队列指定为当前客户端的回调队列
        self.callback_queue = result.method.queue
        # 客户端订阅回调队列,当回调队列中有响应时,调用`on_response`方法对响应进行处理;
        self.channel.basic_consume(self.on_response, no_ack=True,
                                   queue=self.callback_queue)


    # 对回调队列中的响应进行处理的函数
    def on_response(self, ch, method, props, body):
        if self.corr_id == props.correlation_id:
            self.response = body

    # 发出RPC请求
    # 例如这里服务端就是一个切菜师傅,菜切好了,需要传递给洗菜师傅,这个过程是发送rpc请求
    def call(self, n):
        # 初始化 response
        self.response = None
        # 生成correlation_id 关联标识,通过python的uuid库,生成全局唯一标识ID,保证时间空间唯一性
        self.corr_id = str(uuid.uuid4())
        # 发送RPC请求内容到RPC请求队列`s14rpc`,同时发送的还有`reply_to`和`correlation_id`
        self.channel.basic_publish(exchange='',
                                   routing_key='s14rpc',
                                   properties=pika.BasicProperties(
                                       reply_to=self.callback_queue,
                                       correlation_id=self.corr_id,
                                   ),
                                   body=str(n))
        while self.response is None:
            self.connection.process_data_events()
        return int(self.response)

# 建立客户端
fibonacci_rpc = FibonacciRpcClient()

# 发送RPC请求,丢进rpc队列,等待客户端处理完毕,给与响应
print("发送了请求sum(99)")
response = fibonacci_rpc.call(99)

print("得到远程结果响应%r" % response)
View Code

(3). rpc_client.py

import pika
# 建立连接,服务器地址为localhost,可指定ip地址
connection = pika.BlockingConnection(pika.ConnectionParameters(
    host='192.168.119.10'))
# 建立会话
channel = connection.channel()
# 声明RPC请求队列
channel.queue_declare(queue='s14rpc')

# 模拟一个进程,例如切菜师傅,等着洗菜师傅传递数据
def sum(n):
    n+=100
    return n
# 对RPC请求队列中的请求进行处理


def on_request(ch, method, props, body):
    print(body,type(body))
    n = int(body)
    print(" 正在处理sum(%s)" % n)
    # 调用数据处理方法
    response = sum(n)
    # 将处理结果(响应)发送到回调队列
    ch.basic_publish(exchange='',
                     # reply_to代表回复目标
                     routing_key=props.reply_to,
                     # correlation_id(关联标识):用来将RPC的响应和请求关联起来。
                     properties=pika.BasicProperties(correlation_id= \
                                                         props.correlation_id),
                     body=str(response))
    ch.basic_ack(delivery_tag=method.delivery_tag)

# 负载均衡,同一时刻发送给该服务器的请求不超过一个
channel.basic_qos(prefetch_count=1)
channel.basic_consume(on_request, queue='s14rpc')
print("等待接收rpc请求")


#开始消费
channel.start_consuming()
View Code
posted @ 2019-04-02 21:18  骑驴老神仙  阅读(569)  评论(0编辑  收藏  举报