RabbitMQ
一. 你了解的消息队列
生活里的消息队列,如同邮局的邮箱,
如果没邮箱的话,
邮件必须找到邮件那个人,递给他,才玩完成,那这个任务会处理的很麻烦,很慢,效率很低
但是如果有了邮箱,
邮件直接丢给邮箱,用户只需要去邮箱里面去找,有没有邮件,有就拿走,没有就下次再来,这样可以极大的提升邮件收发效率
rabbitmq是一个消息代理,它接收和转发消息,可以理解为是生活的邮局。 你可以将邮件放在邮箱里,你可以确定有邮递员会发送邮件给收件人。 概括: rabbitmq是接收,存储,转发数据的。 官方教程:http://www.rabbitmq.com/tutorials/tutorial-one-python.html
二. 公司在什么情况下会用消息队列?
1. 电商订单
想必同学们都点过外卖,点击下单后的业务逻辑可能包括:检查库存、生成单据、发红包、短信通知等,如果这些业务同步执行,完成下单率会非常低,如发红包,短信通知等不必要的流程,异步执行即可。
此时使用MQ,可以在核心流程(扣减库存、生成订单记录)等完成后发送消息到MQ,快速结束本次流程。消费者拉取MQ消息时,发现红包、短信等消息时,再进行处理。
(1). 场景:双11是购物狂节,用户下单后,订单系统需要通知库存系统,传统的做法就是订单系统调用库存系统的接口
(2). 这种做法有一个缺点:
- 当库存系统出现故障时,订单就会失败。(这样马云将少赚好多好多钱钱。。。。)
- 订单系统和库存系统高耦合
(3). 引入消息队列
- 订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功。
- 库存系统:订阅下单的消息,获取下单消息,进行库操作。 就算库存系统出现故障,消息队列也能保证消息的可靠投递,不会导致消息丢失
2. 秒杀活动
流量削峰一般在秒杀活动中应用广泛 场景:秒杀活动,一般会因为流量过大,导致应用挂掉,为了解决这个问题,一般在应用前端加入消息队列。
(1). 作用:
- 可以控制活动人数,超过此一定阀值的订单直接丢弃
- 业务系统取出队列中的消息,再做后续处理。
- 用户的请求,服务器接收到之后,写入消息队列,超过定义的阈值就直接丢弃请求,或者跳转错误页面。
- 业务系统取出队列中的消息, 再做后续处理
3. RabbitMQ安装
rabbitmq-server服务端 1.下载centos源 wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.cloud.tencent.com/repo/centos7_base.repo 2.下载epel源 wget -O /etc/yum.repos.d/epel.repo http://mirrors.cloud.tencent.com/repo/epel-7.repo 3.清空yum缓存并且生成新的yum缓存 yum clean all yum makecache 4.安装erlang $ yum -y install erlang 5.安装RabbitMQ $ yum -y install rabbitmq-server 6.启动(无用户名密码): systemctl start/stop/restart/status rabbitmq-server 设置rabbitmq账号密码,以及角色权限设置 # 设置新用户yugo 密码123 sudo rabbitmqctl add_user yugo 123 # 设置用户为administrator角色 sudo rabbitmqctl set_user_tags yugo administrator # 设置权限,允许对所有的队列都有权限 对何种资源具有配置、写、读的权限通过正则表达式来匹配,具体命令如下: set_permissions [-p <vhostpath>] <user> <conf> <write> <read> sudo rabbitmqctl set_permissions -p "/" yugo ".*" ".*" ".*" #重启服务生效设置 service rabbitmq-server start/stop/restart rabbitmq相关命令 // 新建用户 rabbitmqctl add_user {用户名} {密码} // 设置权限 rabbitmqctl set_user_tags {用户名} {权限} // 查看用户列表 rabbitmqctl list_users // 为用户授权 添加 Virtual Hosts : rabbitmqctl add_vhost <vhost> // 删除用户 rabbitmqctl delete_user Username // 修改用户的密码 rabbitmqctl change_password Username Newpassword // 删除 Virtual Hosts : rabbitmqctl delete_vhost <vhost> // 添加 Users : rabbitmqctl add_user <username> <password> rabbitmqctl set_user_tags <username> <tag> ... rabbitmqctl set_permissions [-p <vhost>] <user> <conf> <write> <read> // 删除 Users : delete_user <username> // 使用户user1具有vhost1这个virtual host中所有资源的配置、写、读权限以便管理其中的资源 rabbitmqctl set_permissions -p vhost1 user1 '.*' '.*' '.*' // 查看权限 rabbitmqctl list_user_permissions user1 rabbitmqctl list_permissions -p vhost1 // 清除权限 rabbitmqctl clear_permissions [-p VHostPath] User //清空队列步骤 rabbitmqctl reset 需要提前关闭应用rabbitmqctl stop_app , 然后再清空队列,启动应用 rabbitmqctl start_app 此时查看队列rabbitmqctl list_queues 查看所有的exchange: rabbitmqctl list_exchanges 查看所有的queue: rabbitmqctl list_queues 查看所有的用户: rabbitmqctl list_users 查看所有的绑定(exchange和queue的绑定信息): rabbitmqctl list_bindings 查看消息确认信息: rabbitmqctl list_queues name messages_ready messages_unacknowledged 查看RabbitMQ状态,包括版本号等信息:rabbitmqctl status #开启web界面rabbitmq rabbitmq-plugins enable rabbitmq_management #访问web界面 http://server-name:15672/
4. RabbitMQ组件解释
AMQP AMQP协议是一个高级抽象层消息通信协议,RabbitMQ是AMQP协议的实现。它主要包括以下组件: 1.Server(broker): 接受客户端连接,实现AMQP消息队列和路由功能的进程。 2.Virtual Host:其实是一个虚拟概念,类似于权限控制组,一个Virtual Host里面可以有若干个Exchange和Queue,但是权限控制的最小粒度是Virtual Host 3.Exchange:接受生产者发送的消息,并根据Binding规则将消息路由给服务器中的队列。ExchangeType决定了Exchange路由消息的行为,例如,在RabbitMQ中,ExchangeType有direct、Fanout和Topic三种,不同类型的Exchange路由的行为是不一样的。 4.Message Queue:消息队列,用于存储还未被消费者消费的消息。 5.Message: 由Header和Body组成,Header是由生产者添加的各种属性的集合,包括Message是否被持久化、由哪个Message Queue接受、优先级是多少等。而Body是真正需要传输的APP数据。 6.Binding:Binding联系了Exchange与Message Queue。Exchange在与多个Message Queue发生Binding后会生成一张路由表,路由表中存储着Message Queue所需消息的限制条件即Binding Key。当Exchange收到Message时会解析其Header得到Routing Key,Exchange根据Routing Key与Exchange Type将Message路由到Message Queue。Binding Key由Consumer在Binding Exchange与Message Queue时指定,而Routing Key由Producer发送Message时指定,两者的匹配方式由Exchange Type决定。 7.Connection:连接,对于RabbitMQ而言,其实就是一个位于客户端和Broker之间的TCP连接。 8.Channel:信道,仅仅创建了客户端到Broker之间的连接后,客户端还是不能发送消息的。需要为每一个Connection创建Channel,AMQP协议规定只有通过Channel才能执行AMQP的命令。一个Connection可以包含多个Channel。之所以需要Channel,是因为TCP连接的建立和释放都是十分昂贵的,如果一个客户端每一个线程都需要与Broker交互,如果每一个线程都建立一个TCP连接,暂且不考虑TCP连接是否浪费,就算操作系统也无法承受每秒建立如此多的TCP连接。RabbitMQ建议客户端线程之间不要共用Channel,至少要保证共用Channel的线程发送消息必须是串行的,但是建议尽量共用Connection。 9.Command:AMQP的命令,客户端通过Command完成与AMQP服务器的交互来实现自身的逻辑。例如在RabbitMQ中,客户端可以通过publish命令发送消息,txSelect开启一个事务,txCommit提交一个事务。
5. python客户端
// rabbitmq官方推荐的python客户端pika模块
pip3 install pika
三. 应用场景
1. 单发送单接收: 生产-消费者模型
P 是生产者
C 是消费者
中间hello是消息队列
可以有多个P、多个C
P发送消息给hello队列,C消费者从队列中获取消息,默认轮询方式
(1). 生产者send.py
我们的第一个程序send.py将向队列发送一条消息。我们需要做的第一件事是建立与RabbitMQ服务器的连接。
#!/usr/bin/env python import pika # 创建凭证,使用rabbitmq用户密码登录 # 去邮局取邮件,必须得验证身份 credentials = pika.PlainCredentials("s14","123") # 新建连接,这里localhost可以更换为服务器ip # 找到这个邮局,等于连接上服务器 connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.119.10',credentials=credentials)) # 创建频道 # 建造一个大邮箱,隶属于这家邮局的邮箱,就是个连接 channel = connection.channel() # 声明一个队列,用于接收消息,队列名字叫“水许传” channel.queue_declare(queue='水许传') # 注意在rabbitmq中,消息想要发送给队列,必须经过交换(exchange),初学可以使用空字符串交换(exchange=''),它允许我们精确的指定发送给哪个队列(routing_key=''),参数body值发送的数据 channel.basic_publish(exchange='', routing_key='水许传', body='武松又去打老虎啦2') print("已经发送了消息") # 程序退出前,确保刷新网络缓冲以及消息发送给rabbitmq,需要关闭本次连接 connection.close()
可以同时存在多个接受者,等待接收队列的消息,默认是轮训方式分配消息
(2). 接受者receive.py,可以运行多次,运行多个消费者
import pika # 建立与rabbitmq的连接 credentials = pika.PlainCredentials("s14","123") connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.119.10',credentials=credentials)) channel = connection.channel() channel.queue_declare(queue="水许传") def callbak(ch,method,properties,body): print("消费者接收到了任务:%r"%body.decode("utf8")) # 有消息来临,立即执行callbak,没有消息则夯住,等待消息 # 老百姓开始去邮箱取邮件啦,队列名字是水许传 channel.basic_consume(callbak,queue="水许传",no_ack=True) # 开始消费,接收消息 channel.start_consuming()
2. 单发送多接收
使用场景:一个发送端,多个接收端,如分布式的任务派发。为了保证消息发送的可靠性,不丢失消息,使消息持久化了。同时为了防止接收端在处理消息时down掉,只有在消息处理完成后才发送ack消息。
(1). rabbitmq消息确认之ack
官网资料:http://www.rabbitmq.com/tutorials/tutorial-two-python.html
默认情况下,生产者发送数据给队列,消费者取出消息后,数据将被清除。
特殊情况,如果消费者处理过程中,出现错误,数据处理没有完成,那么这段数据将从队列丢失
(2). no-ack机制
不确认机制
也就是说每次消费者接收到数据后,不管是否处理完毕,rabbitmq-server都会把这个消息标记完成,从队列中删除
(3). ACK机制
ACK机制用于保证消费者如果拿了队列的消息,客户端
处理时出错了,那么队列中仍然还存在这个消息,提供下一位消费者继续取
- 流程
1.生产者无须变动,发送消息 2.消费者如果no_ack=True啊,数据消费后如果出错就会丢失; 反之no_ack=False,数据消费如果出错,数据也不会丢失 3.ack机制在消费者代码中演示
- 生产者.py 只负责发送数据即可, 无需变动
#!/usr/bin/env python import pika # 创建凭证,使用rabbitmq用户密码登录 # 去邮局取邮件,必须得验证身份 credentials = pika.PlainCredentials("s14","123") # 新建连接,这里localhost可以更换为服务器ip # 找到这个邮局,等于连接上服务器 connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.119.10',credentials=credentials)) # 创建频道 # 建造一个大邮箱,隶属于这家邮局的邮箱,就是个连接 channel = connection.channel() # 新建一个hello队列,用于接收消息 # 这个邮箱可以收发各个班级的邮件,通过 channel.queue_declare(queue='金品没') # 注意在rabbitmq中,消息想要发送给队列,必须经过交换(exchange),初学可以使用空字符串交换(exchange=''),它允许我们精确的指定发送给哪个队列(routing_key=''),参数body值发送的数据 channel.basic_publish(exchange='', routing_key='金品没', body='潘金莲又出去。。。') print("已经发送了消息") # 程序退出前,确保刷新网络缓冲以及消息发送给rabbitmq,需要关闭本次连接 connection.close()
-
消费者.py 给与ack回复; 拿到消息必须给rabbitmq服务端回复ack信息, 否则消息不会被删除, 防止客户端出错, 数据丢失
import pika credentials = pika.PlainCredentials("s14","123") connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.119.10',credentials=credentials)) channel = connection.channel() # 声明一个队列(创建一个队列) channel.queue_declare(queue='金品没') def callback(ch, method, properties, body): print("消费者接受到了任务: %r" % body.decode("utf-8")) # int('asdfasdf') # 我告诉rabbitmq服务端,我已经取走了消息 # 回复方式在这 ch.basic_ack(delivery_tag=method.delivery_tag) # 关闭no_ack,代表给与服务端ack回复,确认给与回复 channel.basic_consume(callback,queue='金品没',no_ack=False) channel.start_consuming()
(4). 消息持久化
演示 1.执行生产者,向队列写入数据,产生一个新队列queue 2.重启服务端,队列丢失 3.开启生产者数据持久化后,重启rabbitmq,队列不丢失 4.依旧可以读取数据
消息的可靠性是RabbitMQ的一大特色,那么RabbitMQ是如何保证消息可靠性的呢——消息持久化。 为了保证RabbitMQ在退出或者crash等异常情况下数据没有丢失,需要将queue,exchange和Message都持久化。
- 生产者.py
import pika # 无密码 # connection = pika.BlockingConnection(pika.ConnectionParameters('123.206.16.61')) # 有密码 credentials = pika.PlainCredentials("s14","123") connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.119.10',credentials=credentials)) channel = connection.channel() # 声明一个队列(创建一个队列) # 默认此队列不支持持久化,如果服务挂掉,数据丢失 # durable=True 开启持久化,必须新开启一个队列,原本的队列已经不支持持久化了 ''' 实现rabbitmq持久化条件 delivery_mode=2 使用durable=True声明queue是持久化 ''' channel.queue_declare(queue='LOL',durable=True) channel.basic_publish(exchange='', routing_key='LOL', # 消息队列名称 body='德玛西亚万岁', # 支持数据持久化 properties=pika.BasicProperties( delivery_mode=2,#代表消息是持久的 2 ) ) connection.close()
- 消费者.py
import pika credentials = pika.PlainCredentials("s14","123") connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.119.10',credentials=credentials)) channel = connection.channel() # 确保队列持久化 channel.queue_declare(queue='LOL',durable=True) ''' 必须确保给与服务端消息回复,代表我已经消费了数据,否则数据一直持久化,不会消失 ''' def callback(ch, method, properties, body): print("消费者接受到了任务: %r" % body.decode("utf-8")) # 模拟代码报错 # int('asdfasdf') # 此处报错,没有给予回复,保证客户端挂掉,数据不丢失 # 告诉服务端,我已经取走了数据,否则数据一直存在 ch.basic_ack(delivery_tag=method.delivery_tag) # 关闭no_ack,代表给与回复确认 channel.basic_consume(callback,queue='LOL',no_ack=False) channel.start_consuming()
四. Exchange模型
rabbitmq发送消息首先是发给exchange,然后再通过exchange发送消息给队列(queue)
1. exchange有四种模式
(1). fanout
exchange将消息发送给和该exchange连接的所有queue;也就是所谓的广播模式;此模式下忽略routing_key;
(2). direct
路由模式,通过routing_key将消息发送给对应的queue; 如下面这句即可设置exchange为direct模式,只有routing_key为“black”时才将其发送到队列queue_name;channel.queue_bind(exchange=exchange_name,queue=queue_name,routing_key='black')
在上图中,Q1和Q2可以绑定同一个key,如绑定routing_key=‘KeySame’,那么收到routing_key为KeySame的消息时将会同时发送给Q1和Q2,退化为广播模式;
(3). top
topic模式类似于direct模式,只是其中的routing_key变成了一个有“.”分隔的字符串,“.”将字符串分割成几个单词,每个单词代表一个条件;
(4). headers
headers类型的Exchange不依赖于routing key与binding key的匹配规则来路由消息,而是根据发送的消息内容中的headers属性进行匹配。
官方教程:http://www.rabbitmq.com/tutorials/tutorial-three-python.html
发布订阅和简单的消息队列区别在于,发布订阅会将消息发送给所有的订阅者,而消息队列中的数据被消费一次便消失。所以,RabbitMQ实现发布和订阅时,会为每一个订阅者创建一个队列,而发布者发布消息时,会将消息放置在所有相关队列中。
# fanout所有的队列放一份/给某些队列发 # 传送消息的模式 # 与exchange有关的模式都发 exchange_type = fanout 消费者_订阅.py 可以运行多次,运行多个消费者,等待消息 import pika credentials = pika.PlainCredentials("root","123") connection = pika.BlockingConnection(pika.ConnectionParameters('123.206.16.61',credentials=credentials)) channel = connection.channel() # exchange='m1',exchange(秘书)的名称 # exchange_type='fanout' , 秘书工作方式将消息发送给所有的队列 channel.exchange_declare(exchange='m1',exchange_type='fanout') # 随机生成一个队列 result = channel.queue_declare(exclusive=True) queue_name = result.method.queue # 让exchange和queque进行绑定. channel.queue_bind(exchange='m1',queue=queue_name) def callback(ch, method, properties, body): print("消费者接受到了任务: %r" % body) channel.basic_consume(callback,queue=queue_name,no_ack=True) channel.start_consuming() 生产者_发布者.py # -*- coding: utf-8 -*- # __author__ = "yugo" import pika credentials = pika.PlainCredentials("root","123") connection = pika.BlockingConnection(pika.ConnectionParameters('123.206.16.61',credentials=credentials)) channel = connection.channel() # 指定exchange channel.exchange_declare(exchange='m1',exchange_type='fanout') channel.basic_publish(exchange='m1', routing_key='',# 这里不再指定队列,由exchange分配,如果是fanout模式,每一个队列放一份 body='haohaio') connection.close()
2. 实例
(1). 可以运行多个消费者,相当于有多个滴滴司机,等待着Exchange同一个电台发消息
(2). 运行发布者,发送消息给Exchange,查看是否给所有的队列(滴滴司机)发送了消息
五. 关键字发布Exchange
之前事例,发送消息时明确指定某个队列并向其中发送消息,RabbitMQ还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列。
1. 消费者1.py
路由关键字是sb,alex
# -*- coding: utf-8 -*- # __author__ = "maple" import pika credentials = pika.PlainCredentials("root","123") connection = pika.BlockingConnection(pika.ConnectionParameters('123.206.16.61',credentials=credentials)) channel = connection.channel() # exchange='m1',exchange(秘书)的名称 # exchange_type='fanout' , 秘书工作方式将消息发送给所有的队列 channel.exchange_declare(exchange='m2',exchange_type='direct') # 随机生成一个队列,队列退出时,删除这个队列 result = channel.queue_declare(exclusive=True) queue_name = result.method.queue # 让exchange和queque进行绑定,只要 channel.queue_bind(exchange='m2',queue=queue_name,routing_key='alex') channel.queue_bind(exchange='m2',queue=queue_name,routing_key='sb') def callback(ch, method, properties, body): print("消费者接受到了任务: %r" % body) channel.basic_consume(callback,queue=queue_name,no_ack=True) channel.start_consuming()
2. 消费者2.py
路由关键字sb
# -*- coding: utf-8 -*- # __author__ = "maple" import pika credentials = pika.PlainCredentials("root","123") connection = pika.BlockingConnection(pika.ConnectionParameters('123.206.16.61',credentials=credentials)) channel = connection.channel() # exchange='m1',exchange(秘书)的名称 # exchange_type='fanout' , 秘书工作方式将消息发送给所有的队列 channel.exchange_declare(exchange='m2',exchange_type='direct') # 随机生成一个队列 result = channel.queue_declare(exclusive=True) queue_name = result.method.queue # 让exchange和queque进行绑定. channel.queue_bind(exchange='m2',queue=queue_name,routing_key='sb') def callback(ch, method, properties, body): print("消费者接受到了任务: %r" % body) channel.basic_consume(callback,queue=queue_name,no_ack=True) channel.start_consuming()
3. 生产者.py
发送消息给匹配的路由,sb或者alex
# -*- coding: utf-8 -*- # __author__ = "yugo" import pika credentials = pika.PlainCredentials("root","123") connection = pika.BlockingConnection(pika.ConnectionParameters('123.206.16.61',credentials=credentials)) channel = connection.channel() # 路由模式的交换机会发送给绑定的key和routing_key匹配的队列 channel.exchange_declare(exchange='m2',exchange_type='direct') # 发送消息,给有关sb的路由关键字 channel.basic_publish(exchange='m2', routing_key='sb', body='aaaalexlaolelaodi') connection.close()