数据结构与排序算法

数据结构与算法

数据结构(英语:data structure)是计算机中存储、组织数据的方式。

数据结构是一种具有一定逻辑关系,在计算机中应用某种存储结构,并且封装了相应操作的数据元素集合。它包含三方面的内容,逻辑关系、存储关系及操作。

常见的数据结构

1.栈(Stack):栈是一种特殊的线性表,它只能在一个表的一个固定端进行数据结点的插入和删除操作。

2.队列(Queue):队列和栈类似,也是一种特殊的线性表。和栈不同的是,队列只允许在表的一端进行插入操作,而在另一端进行删除操作。

3.数组(Array):数组是一种聚合数据类型,它是将具有相同类型的若干变量有序地组织在一起的集合。

4.链表(Linked List):链表是一种数据元素按照链式存储结构进行存储的数据结构,这种存储结构具有在物理上存在非连续的特点。

5.树(Tree):树是典型的非线性结构,它是包括,2 个结点的有穷集合 K。

6.图(Graph):图是另一种非线性数据结构。在图结构中,数据结点一般称为顶点,而边是顶点的有序偶对。

7.堆(Heap):堆是一种特殊的树形数据结构,一般讨论的堆都是二叉堆。

8.散列表(Hash table):散列表源自于散列函数(Hash function),其思想是如果在结构中存在关键字和T相等的记录,那么必定在F(T)的存储位置可以找到该记录,这样就可以不用进行比较操作而直接取得所查记录。

常用算法

# 数据结构研究的内容:就是如何按一定的逻辑结构,把数据组织起来,并选择适当的存储表示方法把逻辑结构组织好的数据存储到计算机的存储器里。算法研究的目的是为了更有效的处理数据,提高数据运算效率。

数据的运算是定义在数据的逻辑结构上,但运算的具体实现要在存储结构上进行。一般有以下几种常用运算:
1.检索:检索就是在数据结构里查找满足一定条件的节点。一般是给定一个某字段的值,找具有该字段值的节点。
2.插入:往数据结构中增加新的节点。
3.删除:把指定的结点从数据结构中去掉。
4.更新:改变指定节点的一个或多个字段的值。
5.排序:把节点按某种指定的顺序重新排列。例如递增或递减。

排序算法

排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。

# 常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。

稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。
不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序

冒泡排序

冒泡排序就是重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。就这样重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

# 算法步骤
1 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
2 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
3 针对所有的元素重复以上的步骤,除了最后一个。
4 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

# 什么时候最快
当输入的数据已经是正序时(都已经是正序了,我还要你冒泡排序有何用啊)。

# 什么时候最慢
当输入的数据是反序时(写一个 for 循环反序输出数据不就行了,干嘛要用你冒泡排序呢,我是闲的吗)。

# 实例
def bubbleSort(arr):
    for i in range(1, len(arr)):
        for j in range(0, len(arr)-i):
            if arr[j] > arr[j+1]:
                arr[j], arr[j + 1] = arr[j + 1], arr[j]
    return arr

选择排序

选择排序是一种简单直观的排序算法,无论什么数据进去都是 O(n²) 的时间复杂度。所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。

# 算法步骤
1 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
2 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
3 重复第二步,直到所有元素均排序完毕。

# 实例
def selectionSort(arr):
    for i in range(len(arr) - 1):
        # 记录最小数的索引
        minIndex = i
        for j in range(i + 1, len(arr)):
            if arr[j] < arr[minIndex]:
                minIndex = j
        # i 不是最小数时,将 i 和最小数进行交换
        if i != minIndex:
            arr[i], arr[minIndex] = arr[minIndex], arr[i]
    return arr

插入排序

插入排序是一种最简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
'插入排序和冒泡排序一样,也有一种优化算法,叫做拆半插入。'

#  算法步骤
1 将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。
2 从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)

# 实例
def insertionSort(arr):
    for i in range(len(arr)):
        preIndex = i-1
        current = arr[i]
        while preIndex >= 0 and arr[preIndex] > current:
            arr[preIndex+1] = arr[preIndex]
            preIndex-=1
        arr[preIndex+1] = current
    return arr

归并排序

归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
-作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:
	自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法);
	自下而上的迭代;
-和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是 O(nlogn) 的时间复杂度。代价是需要额外的内存空间。

# 算法步骤
1 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
2 设定两个指针,最初位置分别为两个已经排序序列的起始位置;
3 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
4 重复步骤 3 直到某一指针达到序列尾;
5 将另一序列剩下的所有元素直接复制到合并序列尾。

# 实例
def mergeSort(arr):
    import math
    if(len(arr)<2):
        return arr
    middle = math.floor(len(arr)/2)
    left, right = arr[0:middle], arr[middle:]
    return merge(mergeSort(left), mergeSort(right))

def merge(left,right):
    result = []
    while left and right:
        if left[0] <= right[0]:
            result.append(left.pop(0))
        else:
            result.append(right.pop(0));
    while left:
        result.append(left.pop(0))
    while right:
        result.append(right.pop(0));
    return result
posted @   无言以对啊  阅读(46)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?
点击右上角即可分享
微信分享提示

目录导航