hdu 4455 Substrings(计数)
题目大意:给出n,然后是n个数a[1] ~ a[n], 然后是q次询问,每次询问给出w, 将数列a[i]分成若干个连续且元素数量为w的集合,计算每个集合中出现的数字种类,输出总和。
解题思路:一开始想到遍历的算法,保持集合元素为w,每次剔除最前一个,加入一个,移动集合,维护数字种类,这种算法的复杂度为o(n^2), 但是超时了,后来看了下题解,dp[i] = dp[i - 1] + sum[i] - cnt;
http://blog.csdn.net/gotoac/article/details/8188437
#include <stdio.h> #include <string.h> #include <iostream> using namespace std; const int N = 1000005; int n, vis[N], a[N]; __int64 sum[N], cnt, dp[N]; void init() { memset(vis, -1, sizeof(vis)); memset(sum, 0, sizeof(sum)); for (int i = 0; i < n; i++) { scanf("%d", &a[i]); sum[i - vis[a[i]]]++; vis[a[i]] = i; } for (int i = n - 1; i >= 0; i--) sum[i] += sum[i + 1]; } void solve() { memset(dp, 0, sizeof(dp)); dp[1] = n; memset(vis, 0, sizeof(vis)); vis[a[n - 1]] = cnt = 1; for (int i = 2; i <= n; i++) { dp[i] = dp[i - 1] - cnt + sum[i]; vis[a[n - i]]++; if (vis[a[n - i]] == 1) cnt++; } } int main () { while (scanf("%d", &n), n) { init(); solve(); int q, w; scanf("%d", &q); for (int i = 0; i < q; i++) { scanf("%d", &w); printf("%I64d\n", dp[w]); } } return 0; }