HDU 3472 混合图欧拉回路 + 网络流
九野的博客,转载请注明出处:http://blog.csdn.net/acmmmm/article/details/13799337
题意:
T个测试数据
n串字符 能否倒过来用(1表示能倒着用)
问能否把所有字符串 首尾相接
欧拉回路是图G中的一个回路,经过每条边有且仅一次,称该回路为欧拉回路。具有欧拉回路的图称为欧拉图,简称E图。
混合图就是边集中有有向边和无向边同时存在。这时候需要用网络流建模求解。
不能倒着用就是有向边,能倒着用就是无向边
http://yzmduncan.iteye.com/blog/1149049
.
欧拉回路要求出度=入度 ,因此若出度与入度 差为奇数,一定没有欧拉回路 ch[i]%1 必须==0
用并查集判断每个字母的祖先是否相同((不相同则图不连通)
对于所有的点,总入度 + 总出度 = 0 【1】
ch[i]表示字母i+‘a' 的入度-出度的值
由【1】式推出 所有 ch[i] < 0的点 + ch[i]>0 的点 = 0
所以 让所有ch[i]<0 点与源点建边 ,权值为 -ch[i]
ch[i]>0 与汇点建边,权值为 ch[i]
若dinic满流,表示上述式子成立,则存在回路
#include <stdio.h> #include <string.h> #include <queue> #define inf 10000 #define ll short #define end End using namespace std; struct Edge{ short from, to, cap, nex; }edge[1007]; short head[28], edgenum; void addedge(short u, short v, short cap){ Edge E ={u, v, cap, head[u]}; edge[edgenum] = E; head[u] = edgenum++; Edge E_ = {v,u,0,head[v]}; edge[edgenum] = E_; head[v] = edgenum++; } short sign[28]; bool BFS(short from, short to){ memset(sign, -1, sizeof(sign)); sign[from] = 0; queue<short>q; q.push(from); while( !q.empty() ){ int u = q.front(); q.pop(); for(short i = head[u]; i!=-1; i = edge[i].nex) { short v = edge[i].to; if(sign[v]==-1 && edge[i].cap) { sign[v] = sign[u] + 1, q.push(v); if(sign[to] != -1)return true; } } } return false; } short Stack[4], top, cur[4]; short dinic(short from, short to){ short ans = 0; while( BFS(from, to) ) { memcpy(cur, head, sizeof(head)); short u = from; top = 0; while(1) { if(u == to) { short flow = inf, loc;//loc 表示 Stack 中 cap 最小的边 for(short i = 0; i < top; i++) if(flow > edge[ Stack[i] ].cap) { flow = edge[Stack[i]].cap; loc = i; } for(short i = 0; i < top; i++) { edge[ Stack[i] ].cap -= flow; edge[Stack[i]^1].cap += flow; } ans += flow; top = loc; u = edge[Stack[top]].from; } for(short i = cur[u]; i!=-1; cur[u] = i = edge[i].nex)//cur[u] 表示u所在能增广的边的下标 if(edge[i].cap && (sign[u] + 1 == sign[ edge[i].to ]))break; if(cur[u] != -1) { Stack[top++] = cur[u]; u = edge[ cur[u] ].to; } else { if( top == 0 )break; sign[u] = -1; u = edge[ Stack[--top] ].from; } } } return ans; } ll n; char ss[22]; short ch[27], f[27]; bool use[27]; short start, end; short find(short x){return x==f[x]?x:(f[x]=find(f[x]));} void Union(short x, short y){ short fx = find(x), fy = find(y); short temp = fx; if(fx>fy){fx=fy;fy=temp;} f[fx] = fy; } int main(){ short T, i, j, Cas = 1; scanf("%d",&T); while(T--) { memset(ch, 0, sizeof(ch)); memset(use,0, sizeof(use)); for(i=0;i<27;i++)f[i] = i; memset(head, -1,sizeof(head)), edgenum = 0; scanf("%d",&n); for(i = 0; i < n; i++) { scanf("%s %d",ss,&j); int a = ss[0]-'a', b = ss[strlen(ss)-1] - 'a'; ch[a]++, ch[b]--; use[a] = use[b] = true; Union(a,b); if(j)addedge(a,b,1); } printf("Case %d: ",Cas++); bool ok = true; for(i=0;i<26;i++) if(use[i]) { j = i; for(i++;i<26;i++) if(use[i] && find(j)!=find(i))ok = false; break; } short num = 0; for(i=0;i<26;i++)if(use[i] && ch[i]%2) { num++; if(ch[i]<0)start = i; else end = i; } if(num == 1 || num>2)ok = false; if(!ok){ printf("Poor boy!\n"); continue;} if(num == 2)addedge(end, start, 1); start = 26, end = 27; short sum = 0; for(i=0;i<26;i++)if(ch[i] && use[i] && i!=end && i!=start) { if(ch[i]<0) addedge(start,i,-ch[i]/2), sum-=ch[i]/2; else addedge(i,end, ch[i]>>1); } if(sum != dinic(start, end)) printf("Poor boy!\n"); else printf("Well done!\n"); } }