Strict Weak Ordering

Description

A Strict Weak Ordering is a Binary Predicate that compares two objects, returning true if the first precedes the second. This predicate must satisfy the standard mathematical definition of a strict weak ordering. The precise requirements are stated below, but what they roughly mean is that a Strict Weak Ordering has to behave the way that "less than" behaves: if a is less than b then b is not less than a, if a is less than b and b is less than c then a is less than c, and so on.

严格偏序集=二元关系集+二元关系的反自反性+二元关系的传递性+二元关系的反对称性。

Refinement of

Binary Predicate

Associated types

First argument type The type of the Strict Weak Ordering's first argument.
Second argument type The type of the Strict Weak Ordering's second argument. The first argument type and second argument type must be the same.
Result type The type returned when the Strict Weak Ordering is called. The result type must be convertible to bool.

Notation

F A type that is a model of Strict Weak Ordering
X The type of Strict Weak Ordering's arguments.
f Object of type F
xyz Object of type X

Definitions

  • Two objects x and y are equivalent if both f(x, y) and f(y, x) are false. Note that an object is always (by the irreflexivity invariant) equivalent to itself.

Valid expressions

None, except for those defined in the  Binary Predicate  requirements.

Expression semantics

NameExpressionPreconditionSemanticsPostcondition
Function call f(x, y) The ordered pair (x,y) is in the domain of f Returns true if x precedes y, and false otherwise The result is either true or false

Complexity guarantees

Invariants

Irreflexivity f(x, x) must be false.
Antisymmetry f(x, y) implies !f(y, x)
Transitivity f(x, y) and f(y, z) imply f(x, z).
Transitivity of equivalence Equivalence (as defined above) is transitive: if x is equivalent to y and y is equivalent to z, then x is equivalent to z. (This implies that equivalence does in fact satisfy the mathematical definition of an equivalence relation.) [1]

Models

Notes

[1] The first three axioms, irreflexivity, antisymmetry, and transitivity, are the definition of a partial ordering; transitivity of equivalence is required by the definition of a strict weak ordering. A total ordering is one that satisfies an even stronger condition: equivalence must be the same as equality.

 

posted on 2013-10-29 22:24  you Richer  阅读(300)  评论(0编辑  收藏  举报