hdu 4454 Stealing a Cake(三分法)
给定一个起始点,一个矩形,一个圆,三者互不相交。求从起始点->圆->矩形的最短距离。
自己画一画就知道距离和会是凹函数,不过不是一个凹函数。按与水平向量夹角为圆心角求圆上某点坐标,[0, PI] , [PI, 2*pi]两个区间的点会有两个凹函数。所以要做两次三分才行。
#include<algorithm> #include<iostream> #include<fstream> #include<sstream> #include<cstring> #include<cstdlib> #include<string> #include<vector> #include<cstdio> #include<queue> #include<stack> #include<cmath> #include<map> #include<set> #define FF(i, a, b) for(int i=a; i<b; i++) #define FD(i, a, b) for(int i=a; i>=b; i--) #define REP(i, n) for(int i=0; i<n; i++) #define CLR(a, b) memset(a, b, sizeof(a)) #define LL long long #define PB push_back #define eps 1e-10 #define debug puts("**debug**"); using namespace std; const double PI = acos(-1); struct Point { double x, y; Point(double x=0, double y=0):x(x), y(y){} }; typedef Point Vector; Vector operator + (Vector a, Vector b) { return Vector(a.x+b.x, a.y+b.y); } Vector operator - (Vector a, Vector b) { return Vector(a.x-b.x, a.y-b.y); } Vector operator * (Vector a, double p) { return Vector(a.x*p, a.y*p); } Vector operator / (Vector a, double p) { return Vector(a.x/p, a.y/p); } bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); } int dcmp(double x) { if(fabs(x) < eps) return 0; return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point& b) { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; } double Dot(Vector a, Vector b) { return a.x*b.x + a.y*b.y; } double Length(Vector a) { return sqrt(Dot(a, a)); } double Cross(Vector a, Vector b) { return a.x*b.y - a.y*b.x; } double DistanceToSegment(Point p, Point a, Point b) { if(a == b) return Length(p-a); Vector v1 = b-a, v2 = p-a, v3 = p-b; if(dcmp(Dot(v1, v2)) < 0) return Length(v2); else if(dcmp(Dot(v1, v3)) > 0) return Length(v3); else return fabs(Cross(v1, v2)) / Length(v1); } struct Circle { Point c; double r; Circle(){} Circle(Point c, double r):c(c), r(r){} Point point(double a) //根据圆心角求点坐标 { return Point(c.x+cos(a)*r, c.y+sin(a)*r); } }o; Point p, p1, p2, p3, p4, s; double a, b, c, d; double Calc(double x) { p = o.point(x); double d1 = DistanceToSegment(p, p1, p2), d2 = DistanceToSegment(p, p2, p3), d3 = DistanceToSegment(p, p3, p4), d4 = DistanceToSegment(p, p4, p1); //点p到矩形最近距离加上s到p距离 return min(min(d1, d2), min(d3, d4)) + Length(s-p); } double solve() { double L, R, m, mm, mv, mmv; L = 0; R = PI; while (L + eps < R) { m = (L + R) / 2; mm = (m + R) / 2; mv = Calc(m); mmv = Calc(mm); if (mv <= mmv) R = mm; //三分法求最大值时改为mv>=mmv else L = m; } double ret = Calc(L); L = PI; R = 2*PI; while (L + eps < R) { m = (L + R) / 2; mm = (m + R) / 2; mv = Calc(m); mmv = Calc(mm); if (mv <= mmv) R = mm; else L = m; } return min(ret, Calc(L)); } int main() { while(scanf("%lf%lf", &s.x, &s.y)) { if(s.x == 0 && s.y == 0) break; scanf("%lf%lf%lf", &o.c.x, &o.c.y, &o.r); scanf("%lf%lf%lf%lf", &a, &b, &c, &d); //确定矩形四个点坐标,左上点开始 逆时针 double maxx, maxy, minx, miny; maxx = max(a, c); maxy = max(b, d); minx = min(a, c); miny = min(b, d); p1 = Point(minx, maxy); p2 = Point(minx, miny); p3 = Point(maxx, miny); p4 = Point(maxx, maxy); double ans = solve(); printf("%.2f\n", ans); } return 0; }