HDU 4691(多校第九场1006) 后缀数组
。。。还能多说什么。
眼角一滴翔滑过。
一直以为题意是当前串与所有之前输入的串的LCP。。。然后就T了一整场。
扫了一眼标程突然发现他只比较输入的串和上一个串?
我心中突然有千万匹草泥马踏过。
然后随手就A了。。。
先RMQ预处理一下,复杂度为nlogn ,然后每次LCP询问只需O(1)的复杂度。
#include <set> #include <map> #include <stack> #include <cmath> #include <queue> #include <cstdio> #include <string> #include <vector> #include <iomanip> #include <cstring> #include <iostream> #include <algorithm> #define Max 2505 #define FI first #define SE second #define ll __int64 #define PI acos(-1.0) #define inf 0x3fffffff #define LL(x) ( x << 1 ) #define bug puts("here") #define PII pair<int,int> #define RR(x) ( x << 1 | 1 ) #define mp(a,b) make_pair(a,b) #define mem(a,b) memset(a,b,sizeof(a)) #define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i ) using namespace std; inline void RD(int &ret) { char c; int flag = 1 ; do { c = getchar(); if(c == '-')flag = -1 ; } while(c < '0' || c > '9') ; ret = c - '0'; while((c=getchar()) >= '0' && c <= '9') ret = ret * 10 + ( c - '0' ); ret *= flag ; } inline void OT(int a) { if(a >= 10)OT(a / 10) ; putchar(a % 10 + '0') ; } #define N 1000005 /****后缀数组模版****/ #define F(x)((x)/3+((x)%3==1?0:tb)) //F(x)求出原字符串的suffix(x)在新的字符串中的起始位置 #define G(x)((x)<tb?(x)*3+1:((x)-tb)*3+2) //G(x)是计算新字符串的suffix(x)在原字符串中的位置,和F(x)为互逆运算 int wa[N],wb[N],wv[N],WS[N]; int sa[N*3] ; int rank1[N],height[N]; int r[N*3]; int c0(int *r,int a,int b) { return r[a] == r[b] && r[a + 1] == r[b + 1] && r[a + 2] == r[b + 2]; } int c12(int k,int *r,int a,int b) { if(k == 2) return r[a] < r[b] || ( r[a] == r[b] && c12(1 , r , a + 1 , b + 1) ); else return r[a] < r[b] || ( r[a] == r[b] && wv[a + 1] < wv[b + 1] ); } void sort(int *r,int *a,int *b,int n,int m) { int i; for(i = 0; i < n; i ++) wv[i] = r[a[i]]; for(i = 0; i < m; i++) WS[i] = 0; for(i = 0; i < n; i++) WS[wv[i]] ++; for(i = 1; i < m; i++) WS[i] += WS[i-1]; for(i=n-1; i>=0; i--) b[-- WS[wv[i]]] = a[i]; return; } //注意点:为了方便下面的递归处理,r数组和sa数组的大小都要是3*n void dc3(int *r,int *sa,int n,int m) { //rn数组保存的是递归处理的新字符串,san数组是新字符串的sa int i , j , *rn = r + n , *san = sa + n , ta = 0 ,tb = (n + 1) / 3 , tbc = 0 , p; r[n] = r[n+1] = 0; for(i = 0; i < n; i++) { if(i % 3 != 0) wa[tbc ++]=i; //tbc表示起始位置模3为1或2的后缀个数 } sort(r + 2,wa,wb,tbc,m); sort(r + 1,wb,wa,tbc,m); sort(r,wa,wb,tbc,m); for(p = 1,rn[F(wb[0])] = 0,i = 1; i < tbc; i++) rn[F(wb[i])]=c0(r,wb[i - 1],wb[i])?p - 1 : p ++; if(p < tbc) dc3(rn,san,tbc,p); else { for(i = 0; i < tbc; i++) san[rn[i]]=i; } //对所有起始位置模3等于0的后缀排序 for(i = 0; i < tbc; i++) { if(san[i] < tb) wb[ta ++] = san[i] * 3; } if(n % 3 == 1) //n%3==1,要特殊处理suffix(n-1) wb[ta ++] = n - 1; sort(r,wb,wa,ta,m); for(i = 0; i < tbc; i++) wv[wb[i] = G(san[i])] = i; //合并所有后缀的排序结果,保存在sa数组中 for(i = 0,j = 0,p = 0; i < ta && j < tbc; p ++) sa[p] = c12(wb[j] % 3,r,wa[i],wb[j]) ? wa[i ++] : wb[j ++]; for(; i < ta; p++) sa[p] = wa[i++]; for(; j < tbc; p++) sa[p] = wb[j++]; return; } //height[i]=suffix(sa[i-1])和suffix(sa[i])的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀 void calheight(int *r,int *sa,int n) { int i , j , k = 0; for(i = 1; i <= n; i++) rank1[sa[i]] = i; for(i = 0; i < n; height[rank1[i++]] = k) for(k ? k -- : 0 , j = sa[rank1[i]-1]; r[i + k] == r[j + k]; k++); } int RMQ[N]; int mm[N]; int best[20][N]; void initRMQ(int n) { int i,j,a,b; for(mm[0] = -1,i = 1; i <= n; i++) mm[i] = ((i & (i - 1)) == 0)?mm[i - 1] + 1 : mm[i - 1]; for(i = 1; i <= n; i++) best[0][i] = i; for(i = 1; i <= mm[n]; i++) for(j = 1; j <= n + 1 - (1 << i); j++) { a = best[i - 1][j]; b = best[i - 1][j + (1 << (i - 1))]; if(RMQ[a] < RMQ[b]) best[i][j] = a; else best[i][j] = b; } return; } int askRMQ(int a,int b) { int t; t = mm[b - a + 1]; b -= (1 << t ) - 1; a = best[t][a]; b = best[t][b]; return RMQ[a] < RMQ[b] ? a : b; } int lcp(int a,int b) { int t; a = rank1[a]; b = rank1[b]; if(a > b) { t = a; a = b; b = t; } return(height[askRMQ(a + 1,b)]); } /*********************************************/ #define N 1000005 char a[N] ; int n ; int cal(int now){ if(now == 0)return 1 ; int nn = 0 ; while(now){ nn ++ ; now /= 10 ; } return nn ; } int main() { int ttt = 0 ; while(scanf("%s",a) != EOF ) { int l = strlen(a) ; for (int i = 0 ; i < l ; i ++ )r[i] = a[i] ; r[l] = 0 ; dc3(r , sa ,l + 1 , 200) ; calheight(r , sa , l) ; for (int i = 1 ; i <= l ; i ++ )RMQ[i] = height[i] ; initRMQ(l) ; RD(n) ; ll num1 = 0 ,num2 = 0 ; int x , y ; int prex = -1 , prey = -1 ; while(n -- ) { RD(x) ; RD(y) ; num1 += (y - x) + 1 ; if(prex == -1){ num2 += (y - x) + 3 ; prex = x ; prey = y ; continue ; } int now = 0 ; if(x == prex){ now = min(prey - prex , y - x) ; } else{ now = lcp(prex , x) ; now = min(prey - prex , min(y - x , now) ) ; } prex = x ; prey = y ; int fk = now ; now = y - x - now ; if(now == 0){ num2 += 2 + cal(fk) ; }else num2 += cal(fk) + now + 2 ; } printf("%I64d %I64d\n",num1 ,num2) ; ttt ++ ; } return 0 ; }