hdu1024 Max Sum Plus Plus
Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 13233 Accepted Submission(s): 4361
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S
1, S
2, S
3 ... S
n.
Process to the end of file.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
Sample Output
6
8
Hint
Huge input, scanf and dynamic programming is recommended.
分析:
状态dp[i][j]有前j个数,组成i组的和的最大值。决策:
第j个数,是在第包含在第i组里面,还是自己独立成组。
方程 dp[i][j]=Max(dp[i][j-1]+a[j] , max( dp[i-1][k] ) + a[j] ) 0<k<j
空间复杂度,m未知,n<=1000000, 采用滚动数组(因为dp[i][]阶段由dp[i-1][]阶段推出)
时间复杂度 n^3. n<=1000000. 显然会超时。
优化。
max( dp[i-1][k] ) 就是上一组 0....j-1 的最大值。
我们可以在每次计算dp[i][j]的时候记录下前j个的最大值
用数组保存下来 下次计算的时候可以用,这样时间复杂度为 n^2.
#include <stdio.h> #include <string.h> #define INF 0x7fffffff #define MAXN 1000000 #define max(a,b) ((a)>(b)?(a):(b)) int dp[MAXN + 10]; int upper[MAXN + 10]; int a[MAXN + 10]; int main() { int n, m; int i, j, maxx; while (~scanf("%d%d", &m, &n)) { for (i = 1; i <= n; i++) { scanf("%d", &a[i]); } memset(dp,0,(n+1)*sizeof(dp[0])); memset(upper,0,(n+1)*sizeof(upper[0])); for (i = 1; i <= m; i++) { maxx = -INF; for (j = i; j <= n; j++) { dp[j] = max(dp[j - 1] + a[j], upper[j - 1] + a[j]); upper[j - 1] = maxx; maxx = max(maxx, dp[j]); } } printf("%d\n", maxx); } return 0; }