Computational Geometry Template_Polygon
#include <stdlib.h> #include <math.h> #include <iostream> #define MAXN 1000 #define offset 10000 #define eps 1e-8 #define zero(x) (((x)>0?(x):-(x))<eps) #define _sign(x) ((x)>eps?1:((x)<-eps?2:0)) struct point{ double x, y; }; struct line{ point a, b; }; double xmult(point p1, point p2, point p0){ return (p1.x - p0.x)*(p2.y - p0.y) - (p2.x - p0.x)*(p1.y - p0.y); } //判定凸多边形,顶点按顺时针或逆时针给出,允许相邻边共线 bool is_convex(int n, point* p){ int i, s[3] = { 1, 1, 1 }; for (i = 0; i < n && s[1] | s[2]; i++) s[_sign(xmult(p[(i + 1)%n], p[(i + 2)%n], p[i]))] = 0; return s[1] | s[2]; } //判定凸多边形,顶点按顺时针或逆时针给出,不允许相邻边共线 bool is_convex_v2(int n, point* p){ int i, s[3] = { 1, 1, 1 }; for (i = 0; i < n && s[0] && s[1] | s[2]; i++) s[_sign(xmult(p[(i + 1)%n], p[(i + 2)%n], p[i]))] = 0; return s[0] && s[1] | s[2]; } //判点在凸多边形内或多边形边上,顶点按顺时针或逆时针给出 bool inside_convex(point q, int n, point* p){ int i, s[3] = { 1, 1, 1 }; for (i = 0; i < n && s[1] | s[2]; i++) s[_sign(xmult(p[(i + 1)%n], q, p[i]))] = 0; return s[1] | s[2]; } //判点在凸多边形内,顶点按顺时针或逆时针给出,在多边形边上返回0 bool inside_convex_v2(point q, int n, point* p){ int i, s[3] = { 1, 1, 1 }; for (i = 0; i < n && s[0] && s[1] | s[2]; i++) s[_sign(xmult(p[(i + 1)%n], q, p[i]))] = 0; return s[0] && s[1] | s[2]; } //判点在任意多边形内,顶点按顺时针或逆时针给出 //on_edge表示点在多边形边上时的返回值,offset为多边形坐标上限 bool inside_polygon(point q, int n, point* p, int on_edge = 1){ point q2; int i = 0, count; while (i < n) for (count = i = 0, q2.x = rand() + offset, q2.y = rand() + offset; i < n; i++) if (zero(xmult(q, p[i], p[(i + 1)%n])) && (p[i].x - q.x)*(p[(i + 1)%n].x - q.x) < eps && (p[i].y - q.y)*(p[(i + 1)%n].y - q.y) < eps) return on_edge; else if (zero(xmult(q, q2, p[i]))) break; else if (xmult(q, p[i], q2)*xmult(q, p[(i + 1)%n], q2) < -eps && xmult(p[i], q, p[(i + 1)%n])*xmult(p[i], q2, p[(i + 1)%n]) < -eps) count++; return count & 1; } inline bool opposite_side(point p1, point p2, point l1, point l2){ return xmult(l1, p1, l2)*xmult(l1, p2, l2) < -eps; } inline bool dot_online_in(point p, point l1, point l2){ return zero(xmult(p, l1, l2)) && (l1.x - p.x)*(l2.x - p.x) < eps && (l1.y - p.y)*(l2.y - p.y) < eps; } //判线段在任意多边形内,顶点按顺时针或逆时针给出,与边界相交返回1 bool inside_polygon(point l1, point l2, int n, point* p){ point t[MAXN], tt; int i, j, k = 0; if (!inside_polygon(l1, n, p) || !inside_polygon(l2, n, p)) return 0; for (i = 0; i < n; i++) if (opposite_side(l1, l2, p[i], p[(i + 1)%n]) && opposite_side(p[i], p[(i + 1)%n], l1, l2)) return 0; else if (dot_online_in(l1, p[i], p[(i + 1)%n])) t[k++] = l1; else if (dot_online_in(l2, p[i], p[(i + 1)%n])) t[k++] = l2; else if (dot_online_in(p[i], l1, l2)) t[k++] = p[i]; for (i = 0; i < k; i++) for (j = i + 1; j < k; j++){ tt.x = (t[i].x + t[j].x) / 2; tt.y = (t[i].y + t[j].y) / 2; if (!inside_polygon(tt, n, p)) return 0; } return 1; } double distance(point p1, point p2) { return sqrt((p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y)); } double disptoline(point p, point l1, point l2){ return fabs(xmult(p, l1, l2)) / distance(l1, l2); } int intersect_seg_circle(point c, double r, point l1, point l2){ double t1 = distance(c, l1) - r, t2 = distance(c, l2) - r; point t = c; if (t1<eps || t2<eps) return t1>-eps || t2>-eps; t.x += l1.y - l2.y; t.y += l2.x - l1.x; return xmult(l1, c, t)*xmult(l2, c, t) < eps && disptoline(c, l1, l2) - r < eps; } //判断圆是否在多边形内 bool circle_in_polygen(double r, point o, int n, point *p) { for (int i = 1; i < n; i++) { bool flag = intersect_seg_circle(o, r, p[i - 1], p[i]); if (flag) { return false; break; } } return true; } point intersection(line u, line v){ point ret = u.a; double t = ((u.a.x - v.a.x)*(v.a.y - v.b.y) - (u.a.y - v.a.y)*(v.a.x - v.b.x)) / ((u.a.x - u.b.x)*(v.a.y - v.b.y) - (u.a.y - u.b.y)*(v.a.x - v.b.x)); ret.x += (u.b.x - u.a.x)*t; ret.y += (u.b.y - u.a.y)*t; return ret; } point barycenter(point a, point b, point c){ line u, v; u.a.x = (a.x + b.x) / 2; u.a.y = (a.y + b.y) / 2; u.b = c; v.a.x = (a.x + c.x) / 2; v.a.y = (a.y + c.y) / 2; v.b = b; return intersection(u, v); } //多边形重心 point barycenter(int n, point* p){ point ret, t; double t1 = 0, t2; int i; ret.x = ret.y = 0; for (i = 1; i<n - 1; i++) if (fabs(t2 = xmult(p[0], p[i], p[i + 1]))>eps){ t = barycenter(p[0], p[i], p[i + 1]); ret.x += t.x*t2; ret.y += t.y*t2; t1 += t2; } if (fabs(t1) > eps) ret.x /= t1, ret.y /= t1; return ret; }