本文档基于IEDA构建spark maven应用。
date: 2016/8/1
author: wangxl
1.下载IDEA
https://www.jetbrains.com/idea/
2.安装Scala插件
Plugins-->Scala-->Install Plugin
3.生成骨架
3.1 maven生成骨架
mvn archetype:generate -DarchetypeGroupId=net.alchim31.maven -DarchetypeArtifactId=scala-archetype-simple -DarchetypeVersion=1.5 -DgroupId=com.glsx -DartifactId=spark-demo -Dversion=1.0 -Dpackage=com.glsx
注意:
(1) 该骨架生成依赖maven官方源,http://scala-tools.org/repo-releases此源已经失效,不要使用IDEA默认界面生成
(2) 使用-DarchetypeGroupId=net.alchim31.maven,而不是默认的org.scala-tools.archetypes
(3) 2.10.x使用1.5,2.11.x使用1.6
3.2 修改pom文件,添加Spark依赖
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.glsx</groupId>
<artifactId>spark-demo</artifactId>
<version>1.0</version>
<name>${project.artifactId}</name>
<description>My wonderfull scala app</description>
<inceptionYear>2010</inceptionYear>
<licenses>
<license>
<name>My License</name>
<url>http://....</url>
<distribution>repo</distribution>
</license>
</licenses>
<properties>
<maven.compiler.source>1.6</maven.compiler.source>
<maven.compiler.target>1.6</maven.compiler.target>
<encoding>UTF-8</encoding>
<scala.tools.version>2.10</scala.tools.version>
<scala.version>2.10.5</scala.version>
<spark.version>1.6.2</spark.version>
<hadoop.version>2.3.0-cdh5.0.2</hadoop.version>
</properties>
<!--此源只是为了能下载CDH版本JAR-->
<repositories>
<repository>
<id>cloudera-repo</id>
<name>Cloudera Repository</name>
<url>https://repository.cloudera.com/artifactory/cloudera-repos</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<!-- Test -->
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.11</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.specs2</groupId>
<artifactId>specs2_${scala.tools.version}</artifactId>
<version>1.13</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.scalatest</groupId>
<artifactId>scalatest_${scala.tools.version}</artifactId>
<version>2.0.M6-SNAP8</version>
<scope>test</scope>
</dependency>
<!-- Spark -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.6</version>
</dependency>
</dependencies>
<build>
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
<plugins>
<plugin>
<!-- see http://davidb.github.com/scala-maven-plugin -->
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.1.3</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
<configuration>
<args>
<arg>-make:transitive</arg>
<arg>-dependencyfile</arg>
<arg>${project.build.directory}/.scala_dependencies</arg>
</args>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.13</version>
<configuration>
<useFile>false</useFile>
<disableXmlReport>true</disableXmlReport>
<!-- If you have classpath issue like NoDefClassError,... -->
<!-- useManifestOnlyJar>false</useManifestOnlyJar -->
<includes>
<include>**/*Test.*</include>
<include>**/*Suite.*</include>
</includes>
</configuration>
</plugin>
</plugins>
</build>
</project>
3.3 执行打包命令
mvn clean package -DskipTests
这个过程需要很久很久,慢慢地等待,成功如下:
3.4 导入IDEA
4.编写用例
import scala.math.random
import org.apache.spark._
object SparkPi {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("Spark Pi")
val spark = new SparkContext(conf)
val slices = if (args.length > 0) args(0).toInt else 2
val n = math.min(100000L * slices, Int.MaxValue).toInt // avoid overflow
val count = spark.parallelize(1 until n, slices).map { i =>
val x = random * 2 - 1
val y = random * 2 - 1
if (x*x + y*y < 1) 1 else 0
}.reduce(_ + _)
println("Pi is roughly " + 4.0 * count / n)
spark.stop()
}
}
5.打包提交任务
用maven打包,将tar上传至服务器
bin/spark-submit --master yarn --class com.glsx.main.SparkPi spark-demo-1.0.jar
我喜欢一无所有,这样就只能一步一步的创造世界...