etcd学习(3)-grpc使用etcd做服务发现
grpc通过etcd实现服务发现
前言
项目中使用etcd实现了grpc的服务户注册和服务发现,这里来看下如何实现的服务注册和服务发现
先来看下使用的demo,demo中的代码discovery
服务注册
package discovery
import (
"context"
"encoding/json"
"errors"
"net/http"
"strconv"
"strings"
"time"
clientv3 "go.etcd.io/etcd/client/v3"
"go.uber.org/zap"
)
// Register for grpc server
type Register struct {
EtcdAddrs []string
DialTimeout int
closeCh chan struct{}
leasesID clientv3.LeaseID
keepAliveCh <-chan *clientv3.LeaseKeepAliveResponse
srvInfo Server
srvTTL int64
cli *clientv3.Client
logger *zap.Logger
}
// NewRegister create a register base on etcd
func NewRegister(etcdAddrs []string, logger *zap.Logger) *Register {
return &Register{
EtcdAddrs: etcdAddrs,
DialTimeout: 3,
logger: logger,
}
}
// Register a service
func (r *Register) Register(srvInfo Server, ttl int64) (chan<- struct{}, error) {
var err error
if strings.Split(srvInfo.Addr, ":")[0] == "" {
return nil, errors.New("invalid ip")
}
if r.cli, err = clientv3.New(clientv3.Config{
Endpoints: r.EtcdAddrs,
DialTimeout: time.Duration(r.DialTimeout) * time.Second,
}); err != nil {
return nil, err
}
r.srvInfo = srvInfo
r.srvTTL = ttl
if err = r.register(); err != nil {
return nil, err
}
r.closeCh = make(chan struct{})
go r.keepAlive()
return r.closeCh, nil
}
// Stop stop register
func (r *Register) Stop() {
r.closeCh <- struct{}{}
}
// register 注册节点
func (r *Register) register() error {
leaseCtx, cancel := context.WithTimeout(context.Background(), time.Duration(r.DialTimeout)*time.Second)
defer cancel()
leaseResp, err := r.cli.Grant(leaseCtx, r.srvTTL)
if err != nil {
return err
}
r.leasesID = leaseResp.ID
if r.keepAliveCh, err = r.cli.KeepAlive(context.Background(), leaseResp.ID); err != nil {
return err
}
data, err := json.Marshal(r.srvInfo)
if err != nil {
return err
}
_, err = r.cli.Put(context.Background(), BuildRegPath(r.srvInfo), string(data), clientv3.WithLease(r.leasesID))
return err
}
// unregister 删除节点
func (r *Register) unregister() error {
_, err := r.cli.Delete(context.Background(), BuildRegPath(r.srvInfo))
return err
}
// keepAlive
func (r *Register) keepAlive() {
ticker := time.NewTicker(time.Duration(r.srvTTL) * time.Second)
for {
select {
case <-r.closeCh:
if err := r.unregister(); err != nil {
r.logger.Error("unregister failed", zap.Error(err))
}
if _, err := r.cli.Revoke(context.Background(), r.leasesID); err != nil {
r.logger.Error("revoke failed", zap.Error(err))
}
return
case res := <-r.keepAliveCh:
if res == nil {
if err := r.register(); err != nil {
r.logger.Error("register failed", zap.Error(err))
}
}
case <-ticker.C:
if r.keepAliveCh == nil {
if err := r.register(); err != nil {
r.logger.Error("register failed", zap.Error(err))
}
}
}
}
}
// UpdateHandler return http handler
func (r *Register) UpdateHandler() http.HandlerFunc {
return http.HandlerFunc(func(w http.ResponseWriter, req *http.Request) {
wi := req.URL.Query().Get("weight")
weight, err := strconv.Atoi(wi)
if err != nil {
w.WriteHeader(http.StatusBadRequest)
w.Write([]byte(err.Error()))
return
}
var update = func() error {
r.srvInfo.Weight = int64(weight)
data, err := json.Marshal(r.srvInfo)
if err != nil {
return err
}
_, err = r.cli.Put(context.Background(), BuildRegPath(r.srvInfo), string(data), clientv3.WithLease(r.leasesID))
return err
}
if err := update(); err != nil {
w.WriteHeader(http.StatusInternalServerError)
w.Write([]byte(err.Error()))
return
}
w.Write([]byte("update server weight success"))
})
}
func (r *Register) GetServerInfo() (Server, error) {
resp, err := r.cli.Get(context.Background(), BuildRegPath(r.srvInfo))
if err != nil {
return r.srvInfo, err
}
info := Server{}
if resp.Count >= 1 {
if err := json.Unmarshal(resp.Kvs[0].Value, &info); err != nil {
return info, err
}
}
return info, nil
}
来分析下上面的代码实现
当启动一个grpc的时候我们注册到etcd中
etcdRegister := discovery.NewRegister(config.Etcd.Addrs, log.Logger)
node := discovery.Server{
Name: app,
Addr: utils.InternalIP() + config.Port.GRPC,
}
if _, err := etcdRegister.Register(node, 10); err != nil {
panic(fmt.Sprintf("server register failed: %v", err))
}
调用服务注册的时候首先分配了一个租约
func (l *lessor) Grant(ctx context.Context, ttl int64) (*LeaseGrantResponse, error) {
r := &pb.LeaseGrantRequest{TTL: ttl}
resp, err := l.remote.LeaseGrant(ctx, r, l.callOpts...)
if err == nil {
gresp := &LeaseGrantResponse{
ResponseHeader: resp.GetHeader(),
ID: LeaseID(resp.ID),
TTL: resp.TTL,
Error: resp.Error,
}
return gresp, nil
}
return nil, toErr(ctx, err)
}
然后通过KeepAlive保活
// KeepAlive尝试保持给定的租约永久alive
func (l *lessor) KeepAlive(ctx context.Context, id LeaseID) (<-chan *LeaseKeepAliveResponse, error) {
ch := make(chan *LeaseKeepAliveResponse, LeaseResponseChSize)
l.mu.Lock()
// ensure that recvKeepAliveLoop is still running
select {
case <-l.donec:
err := l.loopErr
l.mu.Unlock()
close(ch)
return ch, ErrKeepAliveHalted{Reason: err}
default:
}
ka, ok := l.keepAlives[id]
if !ok {
// create fresh keep alive
ka = &keepAlive{
chs: []chan<- *LeaseKeepAliveResponse{ch},
ctxs: []context.Context{ctx},
deadline: time.Now().Add(l.firstKeepAliveTimeout),
nextKeepAlive: time.Now(),
donec: make(chan struct{}),
}
l.keepAlives[id] = ka
} else {
// add channel and context to existing keep alive
ka.ctxs = append(ka.ctxs, ctx)
ka.chs = append(ka.chs, ch)
}
l.mu.Unlock()
go l.keepAliveCtxCloser(ctx, id, ka.donec)
// 使用once只在第一次调用
l.firstKeepAliveOnce.Do(func() {
// 500毫秒一次,不断的发送保持活动请求
go l.recvKeepAliveLoop()
// 删除等待太久没反馈的租约
go l.deadlineLoop()
})
return ch, nil
}
// deadlineLoop获取在租约TTL中没有收到响应的任何保持活动的通道
func (l *lessor) deadlineLoop() {
for {
select {
case <-time.After(time.Second):
// donec 关闭,当 recvKeepAliveLoop 停止时设置 loopErr
case <-l.donec:
return
}
now := time.Now()
l.mu.Lock()
for id, ka := range l.keepAlives {
if ka.deadline.Before(now) {
// 等待响应太久;租约可能已过期
ka.close()
delete(l.keepAlives, id)
}
}
l.mu.Unlock()
}
}
func (l *lessor) recvKeepAliveLoop() (gerr error) {
defer func() {
l.mu.Lock()
close(l.donec)
l.loopErr = gerr
for _, ka := range l.keepAlives {
ka.close()
}
l.keepAlives = make(map[LeaseID]*keepAlive)
l.mu.Unlock()
}()
for {
// resetRecv 打开一个新的lease stream并开始发送保持活动请求。
stream, err := l.resetRecv()
if err != nil {
if canceledByCaller(l.stopCtx, err) {
return err
}
} else {
for {
// 接收lease stream的返回返回
resp, err := stream.Recv()
if err != nil {
if canceledByCaller(l.stopCtx, err) {
return err
}
if toErr(l.stopCtx, err) == rpctypes.ErrNoLeader {
l.closeRequireLeader()
}
break
}
// 根据LeaseKeepAliveResponse更新租约
// 如果租约过期删除所有alive channels
l.recvKeepAlive(resp)
}
}
select {
case <-time.After(retryConnWait):
continue
case <-l.stopCtx.Done():
return l.stopCtx.Err()
}
}
}
// resetRecv 打开一个新的lease stream并开始发送保持活动请求。
func (l *lessor) resetRecv() (pb.Lease_LeaseKeepAliveClient, error) {
sctx, cancel := context.WithCancel(l.stopCtx)
// 建立服务端和客户端连接的lease stream
stream, err := l.remote.LeaseKeepAlive(sctx, l.callOpts...)
if err != nil {
cancel()
return nil, err
}
l.mu.Lock()
defer l.mu.Unlock()
if l.stream != nil && l.streamCancel != nil {
l.streamCancel()
}
l.streamCancel = cancel
l.stream = stream
go l.sendKeepAliveLoop(stream)
return stream, nil
}
// sendKeepAliveLoop 在给定流的生命周期内发送保持活动请求
func (l *lessor) sendKeepAliveLoop(stream pb.Lease_LeaseKeepAliveClient) {
for {
var tosend []LeaseID
now := time.Now()
l.mu.Lock()
for id, ka := range l.keepAlives {
if ka.nextKeepAlive.Before(now) {
tosend = append(tosend, id)
}
}
l.mu.Unlock()
for _, id := range tosend {
r := &pb.LeaseKeepAliveRequest{ID: int64(id)}
if err := stream.Send(r); err != nil {
// TODO do something with this error?
return
}
}
select {
// 每500毫秒执行一次
case <-time.After(500 * time.Millisecond):
case <-stream.Context().Done():
return
case <-l.donec:
return
case <-l.stopCtx.Done():
return
}
}
}
// 撤销给定的租约,所有附加到租约的key将过期并被删除
func (l *lessor) Revoke(ctx context.Context, id LeaseID) (*LeaseRevokeResponse, error) {
r := &pb.LeaseRevokeRequest{ID: int64(id)}
resp, err := l.remote.LeaseRevoke(ctx, r, l.callOpts...)
if err == nil {
return (*LeaseRevokeResponse)(resp), nil
}
return nil, toErr(ctx, err)
}
总结:
1、每次注册一个服务的分配一个租约;
2、KeepAlive通过从客户端到服务器端的流化的keep alive
请求和从服务器端到客户端的流化的keep alive
应答来维持租约;
3、KeepAlive会500毫秒进行一次lease stream的发送;
4、然后接收到KeepAlive发送信息回执,处理更新租约,服务处于活动状态;
5、如果在租约TTL中没有收到响应的任何保持活动的请求,删除租约;
6、Revoke撤销一个租约,所有附加到租约的key将过期并被删除。
服务发现
我们只需实现grpc在resolver中提供了Builder和Resolver接口,就能完成gRPC客户端的服务发现和负载均衡
// 创建一个resolver用于监视名称解析更新
type Builder interface {
Build(target Target, cc ClientConn, opts BuildOption) (Resolver, error)
Scheme() string
}
-
Build方法:为给定目标创建一个新的resolver,当调用grpc.Dial()时执行;
-
Scheme方法:返回此resolver支持的方案,可参考Scheme定义
// 监视指定目标的更新,包括地址更新和服务配置更新
type Resolver interface {
ResolveNow(ResolveNowOption)
Close()
}
-
ResolveNow方法:被 gRPC 调用,以尝试再次解析目标名称。只用于提示,可忽略该方法;
-
Close方法:关闭resolver。
接下来看下具体的实现
package discovery
import (
"context"
"time"
"go.uber.org/zap"
"go.etcd.io/etcd/api/v3/mvccpb"
clientv3 "go.etcd.io/etcd/client/v3"
"google.golang.org/grpc/resolver"
)
const (
schema = "etcd"
)
// Resolver for grpc client
type Resolver struct {
schema string
EtcdAddrs []string
DialTimeout int
closeCh chan struct{}
watchCh clientv3.WatchChan
cli *clientv3.Client
keyPrifix string
srvAddrsList []resolver.Address
cc resolver.ClientConn
logger *zap.Logger
}
// NewResolver create a new resolver.Builder base on etcd
func NewResolver(etcdAddrs []string, logger *zap.Logger) *Resolver {
return &Resolver{
schema: schema,
EtcdAddrs: etcdAddrs,
DialTimeout: 3,
logger: logger,
}
}
// Scheme returns the scheme supported by this resolver.
func (r *Resolver) Scheme() string {
return r.schema
}
// Build creates a new resolver.Resolver for the given target
func (r *Resolver) Build(target resolver.Target, cc resolver.ClientConn, opts resolver.BuildOptions) (resolver.Resolver, error) {
r.cc = cc
r.keyPrifix = BuildPrefix(Server{Name: target.Endpoint, Version: target.Authority})
if _, err := r.start(); err != nil {
return nil, err
}
return r, nil
}
// ResolveNow resolver.Resolver interface
func (r *Resolver) ResolveNow(o resolver.ResolveNowOptions) {}
// Close resolver.Resolver interface
func (r *Resolver) Close() {
r.closeCh <- struct{}{}
}
// start
func (r *Resolver) start() (chan<- struct{}, error) {
var err error
r.cli, err = clientv3.New(clientv3.Config{
Endpoints: r.EtcdAddrs,
DialTimeout: time.Duration(r.DialTimeout) * time.Second,
})
if err != nil {
return nil, err
}
resolver.Register(r)
r.closeCh = make(chan struct{})
if err = r.sync(); err != nil {
return nil, err
}
go r.watch()
return r.closeCh, nil
}
// watch update events
func (r *Resolver) watch() {
ticker := time.NewTicker(time.Minute)
r.watchCh = r.cli.Watch(context.Background(), r.keyPrifix, clientv3.WithPrefix())
for {
select {
case <-r.closeCh:
return
case res, ok := <-r.watchCh:
if ok {
r.update(res.Events)
}
case <-ticker.C:
if err := r.sync(); err != nil {
r.logger.Error("sync failed", zap.Error(err))
}
}
}
}
// update
func (r *Resolver) update(events []*clientv3.Event) {
for _, ev := range events {
var info Server
var err error
switch ev.Type {
case mvccpb.PUT:
info, err = ParseValue(ev.Kv.Value)
if err != nil {
continue
}
addr := resolver.Address{Addr: info.Addr, Metadata: info.Weight}
if !Exist(r.srvAddrsList, addr) {
r.srvAddrsList = append(r.srvAddrsList, addr)
r.cc.UpdateState(resolver.State{Addresses: r.srvAddrsList})
}
case mvccpb.DELETE:
info, err = SplitPath(string(ev.Kv.Key))
if err != nil {
continue
}
addr := resolver.Address{Addr: info.Addr}
if s, ok := Remove(r.srvAddrsList, addr); ok {
r.srvAddrsList = s
r.cc.UpdateState(resolver.State{Addresses: r.srvAddrsList})
}
}
}
}
// sync 同步获取所有地址信息
func (r *Resolver) sync() error {
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)
defer cancel()
res, err := r.cli.Get(ctx, r.keyPrifix, clientv3.WithPrefix())
if err != nil {
return err
}
r.srvAddrsList = []resolver.Address{}
for _, v := range res.Kvs {
info, err := ParseValue(v.Value)
if err != nil {
continue
}
addr := resolver.Address{Addr: info.Addr, Metadata: info.Weight}
r.srvAddrsList = append(r.srvAddrsList, addr)
}
r.cc.UpdateState(resolver.State{Addresses: r.srvAddrsList})
return nil
}
总结:
1、watch会监听前缀的信息变更,有变更的通知,及时更新srvAddrsList的地址信息;
2、sync会定时的同步etcd中的可用的服务地址到srvAddrsList中;
3、使用UpdateState更新ClientConn的Addresses;
4、然后grpc客户端就能根据配置的具体策略发送请求到grpc的server中。
这里使用gRPC内置的负载均衡策略round_robin
,根据负载均衡地址,以轮询的方式进行调用服务,来测试下服务的发现和简单的服务负载
package discovery
import (
"context"
"fmt"
"log"
"net"
"testing"
"time"
"go.uber.org/zap"
"google.golang.org/grpc/balancer/roundrobin"
"google.golang.org/grpc/resolver"
"etcd-learning/discovery/helloworld"
"google.golang.org/grpc"
)
var etcdAddrs = []string{"127.0.0.1:2379"}
func TestResolver(t *testing.T) {
r := NewResolver(etcdAddrs, zap.NewNop())
resolver.Register(r)
// etcd中注册5个服务
go newServer(t, ":1001", "1.0.0", 1)
go newServer(t, ":1002", "1.0.0", 1)
go newServer(t, ":1003", "1.0.0", 1)
go newServer(t, ":1004", "1.0.0", 1)
go newServer(t, ":1006", "1.0.0", 10)
conn, err := grpc.Dial("etcd:///hello", grpc.WithInsecure(), grpc.WithBalancerName(roundrobin.Name))
if err != nil {
t.Fatalf("failed to dial %v", err)
}
defer conn.Close()
c := helloworld.NewGreeterClient(conn)
// 进行十次数据请求
for i := 0; i < 10; i++ {
resp, err := c.SayHello(context.Background(), &helloworld.HelloRequest{Name: "abc"})
if err != nil {
t.Fatalf("say hello failed %v", err)
}
log.Println(resp.Message)
time.Sleep(100 * time.Millisecond)
}
time.Sleep(10 * time.Second)
}
type server struct {
Port string
}
// SayHello implements helloworld.GreeterServer
func (s *server) SayHello(ctx context.Context, in *helloworld.HelloRequest) (*helloworld.HelloReply, error) {
return &helloworld.HelloReply{Message: fmt.Sprintf("Hello From %s", s.Port)}, nil
}
func newServer(t *testing.T, port string, version string, weight int64) {
register := NewRegister(etcdAddrs, zap.NewNop())
defer register.Stop()
listen, err := net.Listen("tcp", port)
if err != nil {
log.Fatalf("failed to listen %v", err)
}
s := grpc.NewServer()
helloworld.RegisterGreeterServer(s, &server{Port: port})
info := Server{
Name: "hello",
Addr: fmt.Sprintf("127.0.0.1%s", port),
Version: version,
Weight: weight,
}
register.Register(info, 10)
if err := s.Serve(listen); err != nil {
log.Fatalf("failed to server %v", err)
}
}
这里注册了5个服务,端口号是1001到1006,循环调用10次
=== RUN TestResolver
2021/07/24 22:44:52 Hello From :1001
2021/07/24 22:44:52 Hello From :1006
2021/07/24 22:44:53 Hello From :1001
2021/07/24 22:44:53 Hello From :1002
2021/07/24 22:44:53 Hello From :1003
2021/07/24 22:44:53 Hello From :1004
2021/07/24 22:44:53 Hello From :1006
2021/07/24 22:44:53 Hello From :1001
2021/07/24 22:44:53 Hello From :1002
2021/07/24 22:44:53 Hello From :1003
发现每次的请求会发送到不同的服务中
负载均衡
集中式LB(Proxy Model)
在服务消费者和服务提供者之间有一个独立的LB,通常是专门的硬件设备如 F5,或者基于软件如LVS
,HAproxy
等实现。LB上有所有服务的地址映射表,通常由运维配置注册,当服务消费方调用某个目标服务时,它向LB发起请求,由LB以某种策略,比如轮询(Round-Robin)
做负载均衡后将请求转发到目标服务。LB一般具备健康检查能力,能自动摘除不健康的服务实例。
该方案主要问题:
1、单点问题,所有服务调用流量都经过LB,当服务数量和调用量大的时候,LB容易成为瓶颈,且一旦LB发生故障影响整个系统;
2、服务消费方、提供方之间增加了一级,有一定性能开销。
进程内LB(Balancing-aware Client)
针对第一个方案的不足,此方案将LB的功能集成到服务消费方进程里,也被称为软负载或者客户端负载方案。服务提供方启动时,首先将服务地址注册到服务注册表,同时定期报心跳到服务注册表以表明服务的存活状态,相当于健康检查,服务消费方要访问某个服务时,它通过内置的LB组件向服务注册表查询,同时缓存并定期刷新目标服务地址列表,然后以某种负载均衡策略选择一个目标服务地址,最后向目标服务发起请求。LB和服务发现能力被分散到每一个服务消费者的进程内部,同时服务消费方和服务提供方之间是直接调用,没有额外开销,性能比较好。
该方案主要问题:
1、开发成本,该方案将服务调用方集成到客户端的进程里头,如果有多种不同的语言栈,就要配合开发多种不同的客户端,有一定的研发和维护成本;
2、另外生产环境中,后续如果要对客户库进行升级,势必要求服务调用方修改代码并重新发布,升级较复杂。
独立 LB 进程(External Load Balancing Service)
该方案是针对第二种方案的不足而提出的一种折中方案,原理和第二种方案基本类似。
不同之处是将LB和服务发现功能从进程内移出来,变成主机上的一个独立进程。主机上的一个或者多个服务要访问目标服务时,他们都通过同一主机上的独立LB进程做服务发现和负载均衡。该方案也是一种分布式方案没有单点问题,一个LB进程挂了只影响该主机上的服务调用方,服务调用方和LB之间是进程内调用性能好,同时该方案还简化了服务调用方,不需要为不同语言开发客户库,LB的升级不需要服务调用方改代码。
该方案主要问题:部署较复杂,环节多,出错调试排查问题不方便。
上面通过etcd实现服务发现,使用的及时第二种 进程内LB(Balancing-aware Client)。
参考
【Load Balancing in gRPC】https://github.com/grpc/grpc/blob/master/doc/load-balancing.md
【文中的代码示例】https://github.com/boilingfrog/etcd-learning/tree/main/discovery