计算几何讲义——一道题目呈现的计算几何知识点
我们通过一个具体的题目来学习几个计算几何的知识点。
在计算几何中所谓的知识点,其实就是一个又一个的函数,因此在学习过程中要注意积累这些函数,并且要充分理解它们的使用条件,这样在用的时候才能够得心应手。
Ex1:
Morley定理告诉我们,任意三角形的三个角的6条三等分线会交出一个等边三角形记作△DEF,那么现在给出△ABC的三个顶点,请计算D、E、F的坐标.
分析:既然这道题目给出了原理,那么它的难点就主要在于如何取编程实现计算。我们首先来看一下为了求解这三个顶点,我们需要做一些什么,然后各自独立的分析,形成功能独立的函数。
首先,求解三个顶点的过程中是存在对称性,因此我们找到求出一个顶点的方法即可,根据Morley定理,我们需要找到两个角的各自三等分线(靠近公共边的),他们的交点就是正三角形中的一个顶点。
(1):两条三等分怎么找?
考察这里我们有的已知条件:初始向量BC,旋转角度,旋转方向。然后现在我们想要求解旋转后的向量BD,因此这里我们用到向量旋转公式:
(2)旋转角度怎么求?
已知两个向量,求其夹角,用简单的点积就可以实现。
(3)求得两条三等分直线后,如何求交点呢?
需要注意的是,上文求得的所谓的“三等分直线”本质上是向量,而向量是可以平移的,因此我们需要用直线上边的点来限制向量的平移,也就是说,这里我们用向量参数来表示一条直线。
看t1、t2的形式是不是很像克莱姆法则啊,猜对了,其实它就是一个线性方程组的解。
完成了这些准备工作,关于代码实现,也就一目了然了。
简单的参考代码如下:
#include<cstdio> #include<cstring> #include<cmath> using namespace std; struct point { double x , y; point(double x = 0 , double y = 0):x(x),y(y){};//定义点的时候直接利用构造函数,很方便 }; typedef point Vector;//这里因为向量都有两个维度的有序参量 Vector operator + (Vector A,Vector B){return Vector(A.x+B.x , A.y+B.y);} Vector operator - (point A,point B) {return Vector(A.x-B.x , A.y-B.y);} Vector operator * (Vector A,double p){return Vector(A.x*p , A.y*p);} Vector operator / (Vector A,double p){return Vector(A.x/p , A.y/p);} double Cross(Vector A , Vector B)//向量叉积 { return A.x * B.y - A.y * B.x; } point GetLineIntersection(point P ,Vector v , point Q , Vector w) //两直线交点(参数法) { Vector u = P-Q; double t = Cross(w , u) / Cross(v ,w); return P+v*t; } Vector Rotate(Vector A , double rad)//向量旋转(逆时针是正角) { return Vector(A.x*cos(rad) - A.y*sin(rad) , A.x*sin(rad) + A.y*cos(rad)); } double Dot(Vector A, Vector B){return A.x*B.x + A.y*B.y;}//向量点乘 double Length(Vector A){return sqrt(Dot(A,A));} //向量模长 double Angle(Vector A, Vector B){return acos(Dot(A,B)/Length(A)/Length(B));}//向量之间夹角 point getD(point A , point B , point C) { Vector v1 = C - B; double a1 = Angle(A-B , v1); v1 = Rotate(v1 , a1/3); Vector v2 = B - C; double a2 = Angle(A-C , v2); v2 = Rotate(v2 , -a2/3); return GetLineIntersection(B , v1 , C , v2); } int main() { int T; point A,B,C,D,E,F; scanf("%d",&T); while(T--) { scanf("%lf%lf%lf%lf%lf%lf",&A.x,&A.y,&B.x,&B.y,&C.x,&C.y); D = getD(A,B,C); E = getD(B,C,A); F = getD(C,A,B); printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n",D.x,D.y,E.x,E.y,F.x,F.y); } return 0; }