《入门经典》——6.20

小球下落:

  有一棵二叉树,最大深度为D,且所有叶子的深度相同。所有节点从上到下从左到右编号为1,2,3…2^D-1.在结点1处放一个小球,它会往下落。每个内节点上都有一个开关,初始全部关闭,当每次有小球落到一个开关上时,它的状态都会改变。当小球达到一个内节点时,如果该节点上的开关关闭,则往左走,否则往右走,直到走到叶子节点。

  一些小球从节点1依次开始下落,最后一个小球将会落到哪里呢?输入叶子深度D和小球个数I,输出第I个小球最后所在的叶子编号。假设I不超过整棵树的叶子个数,D≤20.输入最多包含1000组数据。

  样例输入:

  4 2

  3 4

  10 1

  2 2

  8 128

  16 12345

  样例输出:

  12

  7

  512

  3

  255

  36358

  分析:这是一道基于完全二叉树的模拟问题,我们通过设置一个Switch数组来记录每个节点的开关状态,不难进行模拟编程,简单的代码如下。

  #include<cstdio>

#include<cstring>

using namespace std;

const int maxn = 1000;

int Switch[maxn];

 

int main()

{

    int D , I;

    while(scanf("%d%d",&D,&I)!=EOF)

    {

         int temp = (1<<D)-1;

 

         int index;

         memset(Switch,0,sizeof(Switch));

         for(int i = 1;i <= I;i++)

         {

              index = 1;

 

 

             while(2*index+1 <= temp)

             {

                 if(Switch[index]==0)

                 {

                     Switch[index] = 1;

                     index = 2*index;

                    // printf("%d ",index);

 

                 }

                 else

                 {

                     Switch[index] = 0;

                     index = 2*index + 1;

                     //printf("%d ",index);

 

                 }

 

             }

 

         }

          printf("%d\n",index);

    }

}

 

 

  但是这里我们进行一下优化处理,因为考虑到D的范围,我们记录开关状态的数组Switch要开到2^20-1≈10^6左右,这让整个程序抱起来显得有些笨拙不堪。

  对于最后一个球,它对于节点1,我们通过判断总球数I的奇偶性,可以判断最后一个球落在节点1的左子树中还是右子树中。假设它落在了左子树中,也就是节点2,我们可以通过相同的方法来进行判断,这样我们就可以一次性模拟出最后一个小球的路径了。

  需要注意的是,对于某个节点,该节点下的球数是奇数,记为I’,那么最后一个球将会走这个节点的左子树,而这个左子树下的小球数的求解方法应该注意,是I’/2向上取整(因为要加上这最后一个小球嘛)。

  简单的参考代码如下。

 

 #include<cstdio>

using namespace std;

 

int main()

{

    int D , I;

    while(scanf("%d%d",&D,&I) != EOF)

    {

         int k = 1;

         for(int i = 1;i < D;i++)

         {

             if(I%2)   {k = 2*k;I = (I+1)/2;}

             else      {k=2*k+1;I = I/2;}

         }

         printf("%d\n",k);

    }

}

 

posted on 2016-06-20 17:38  在苏州的城边  阅读(222)  评论(0编辑  收藏  举报

导航