Factorial Trailing Zeroes
Given an integer n, return the number of trailing zeroes in n!.
Note: Your solution should be in logarithmic time complexity.
最初想法是计算里面能被5整除的数字的个数(因为能被2整除的肯定多于5). 后来发现不对,要将所有数字包含的最大5的阶乘数加起来。 (即25的话要算2)
n!后缀0的个数 = n!质因子中5的个数
= floor(n/5) + floor(n/25) + floor(n/125) + ....
1 public class Solution { 2 public int trailingZeroes(int n) { 3 int result = 0; 4 // for(int i = 1; i <= n; i ++){ 5 // int cur = i; 6 // while(cur % 5 == 0){ 7 // cur /= 5; 8 // result ++; 9 // } 10 // } 11 for(long i = 5; i <= n; i *=5){ 12 result += (int)n / i; 13 } 14 return result; 15 } 16 }
posted on 2015-01-16 15:04 Step-BY-Step 阅读(123) 评论(0) 编辑 收藏 举报