Triangle
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
1 public class Solution { 2 public int minimumTotal(ArrayList<ArrayList<Integer>> triangle) { 3 // Start typing your Java solution below 4 // DO NOT write main() function 5 if(triangle == null) return 0; 6 if(triangle.size() == 0) return 0; 7 int[] a = new int[triangle.size()]; 8 for(int i = 0; i < triangle.size(); i ++){ 9 a[i] = triangle.get(triangle.size() - 1).get(i); 10 } 11 for(int j = triangle.size() - 1; j > 0; j --){ 12 for(int i = 0; i < j; i ++){ 13 a[i] = triangle.get(j - 1).get(i) + Math.min(a[i],a[i+1]); 14 } 15 } 16 return a[0]; 17 } 18 }
第二遍:
1 public class Solution { 2 public int minimumTotal(ArrayList<ArrayList<Integer>> triangle) { 3 // IMPORTANT: Please reset any member data you declared, as 4 // the same Solution instance will be reused for each test case. 5 Integer[] a = triangle.get(triangle.size()-1).toArray(new Integer[0]); 6 for(int j = triangle.size() - 1; j > 0; j --) 7 for(int i = 0; i < j; i ++) 8 a[i] = triangle.get(j-1).get(i) + Math.min(a[i],a[i+1]); 9 return a[0]; 10 } 11 }
posted on 2013-09-24 07:26 Step-BY-Step 阅读(237) 评论(0) 编辑 收藏 举报