最大子矩阵和

前言:

今天花了很长时间,看了无数人写的帖子,但是几乎没有人把这个问题一下子说得很清楚,所以,我把这个问题按照自己的思路写出来,希望能够把这个问题讲清楚。

问题:

求一个M*N的矩阵的最大子矩阵和。
比如在如下这个矩阵中:
 0 -2 -7  0
 9  2 -6  2
-4  1 -4  1
-1  8  0 -2 
拥有最大和的子矩阵为:
 9 2
-4 1
-1 8
其和为15。

思路:

首先,这个子矩阵可以是任意大小的,而且起始点也可以在任何地方,所以,要把最大子矩阵找出来,我们要考虑多种情况。

假定原始矩阵的行数为M,那么对于子矩阵,它的行数可以是1到M的任何一个数,而且,对于一个K行(K < M)的子矩阵,它的第一行可以是原始矩阵的第1行到 M - K + 1 的任意一行。

例子:

对于上面的矩阵,如果子矩阵的行数是2,那么它可以是下面几个矩阵的子矩阵:

 0 -2 -7  0
 9  2 -6  2

或者

 9  2 -6  2
-4  1 -4  1

或者

-4  1 -4  1
-1  8  0 -2 

在每一种情况里(我们这里有三种),我们还要找出一个最大的子矩阵,当然,这只是一种情况的最大子矩阵(局部最大),不一定是global最大。但是,如果我们知道每一种情况的最大,要找出global最大,那就小菜一碟儿了。

在讲在一个特殊情况下求最大子矩阵之前,先讲一个事实:

假设这个最大子矩阵的维数是一维,要找出最大子矩阵, 原理与求“最大子段和问题” 是一样的。最大子段和问题的递推公式是 b[j]=max{b[j-1]+a[j], a[j]},b[j] 指的是从0开始到j的最大子段和。

例子:

假设原始矩阵为:[9,  2, -6,  2], 那么b[] = {9, 11, 5, 7}, 那么最大字段和为11, 如果找最大子矩阵的话,那么这个子矩阵是 [9, 2] 

求最大子段和的代码如下:

 

  1. public int maxSubsequence(int[] array) {  
  2.         if (array.length == 0) {  
  3.             return 0;  
  4.         }  
  5.         int max = Integer.MIN_VALUE;  
  6.         int[] maxSub = new int[array.length];  
  7.         maxSub[0] = array[0];  
  8.           
  9.         for (int i = 1; i < array.length; i++) {  
  10.             maxSub[i] = (maxSub[i-1] > 0) ? (maxSub[i-1] + array[i]) : array[i];   
  11.             if (max < maxSub[i]) {  
  12.                 max = maxSub[i];  
  13.             }  
  14.         }  
  15.         return max;  
  16.     }  


但是,原始矩阵可以是二维的。假设原始矩阵是一个3 * n 的矩阵,那么它的子矩阵可以是 1 * k, 2 * k, 3 * k,(1 <= k <= n)。 如果是1*K,这里有3种情况:子矩阵在第一行,子矩阵在第二行,子矩阵在第三行。如果是 2 * k,这里有两种情况,子矩阵在第一、二行,子矩阵在第二、三行。如果是3 * k,只有一种情况。

 

 

为了能够找出最大的子矩阵,我们需要考虑所有的情况。假设这个子矩阵是 2 *k, 也就是说它只有两行,要找出最大子矩阵,我们要从左到右不断的遍历才能找出在这种情况下的最大子矩阵。如果我们把这两行上下相加,情况就和求“最大子段和问题” 又是一样的了

为了找出在原始矩阵里的最大子矩阵,我们要遍历所有的子矩阵的可能情况,也就是说,我们要考虑这个子矩阵有可能只有1行,2行,。。。到n行。而在每一种情况下,我们都要把它所对应的矩阵部分上下相加才求最大子矩阵(局部)。

比如,假设子矩阵是一个3*k的矩阵,而且,它的一行是原始矩阵的第二行,那么,我们就要在

 9  2 -6  2
-4  1 -4  1
-1  8  0 -2 

里找最大的子矩阵。

如果把它上下相加,我们就变成了 4, 11, -10,1, 从这个数列里可以看出,在这种情况下,最大子矩阵是一个3*2的矩阵,最大和是15.

为了能够在原始矩阵里很快得到从 i 行到 j 行 的上下值之和,我们这里用到了一个辅助矩阵,它是原始矩阵从上到下加下来的。

假设原始矩阵是matrix, 它每一层上下相加后得到的矩阵是total,那么我们可以通过如下代码实现:

  1. int[][] total = matrix;  
  2. for (int i = 1; i < matrix[0].length; i++) {  
  3.     for (int j = 0; j < matrix.length; j++) {  
  4.     total[i][j] += total[i-1][j];  
  5.     }  
  6. }  


如果我们要求第 i 行到第 j 行之间上下值的和,我们可以通过total[j][k] - total[i-1][k] 得到, k 的范围从1 到 matrix[0].length - 1。

 

有了这些知识点,我们只需要在所有的情况下,把它们所对应的局部最大子矩阵进行比较,就可以得到全局最大的子矩阵。代码如下:

 

    1. public int subMaxMatrix(int[][] matrix) {  
    2.           
    3.         int[][] total = matrix;  
    4.         for (int i = 1; i < matrix[0].length; i++) {  
    5.             for (int j = 0; j < matrix.length; j++) {  
    6.                 total[i][j] += total[i-1][j];  
    7.             }  
    8.         }  
    9.           
    10.         int maximum = Integer.MIN_VALUE;  
    11.         for (int i = 0; i < matrix.length; i++) {  
    12.             for (int j = i; j < matrix.length; j++) {  
    13.                 //result 保存的是从 i 行 到第 j 行 所对应的矩阵上下值的和  
    14.                                 int[] result = new int[matrix[0].length];  
    15.                 for (int f = 0; f < matrix[0].length; f++) {  
    16.                     if (i == 0) {  
    17.                         result[f] = total[j][f];  
    18.                     } else {  
    19.                         result[f] = total[j][f] - total[i - 1][f];  
    20.                     }  
    21.                 }  
    22.                 int maximal = maxSubsequence(result);  
    23.                   
    24.                 if (maximal > maximum) {  
    25.                     maximum = maximal;  
    26.                 }  
    27.             }  
    28.         }  
    29.           
    30.         return maximum;  
    31.     }  

posted on 2013-09-14 06:04  Step-BY-Step  阅读(544)  评论(1编辑  收藏  举报

导航