Maximum Sum (二维)
108 - Maximum Sum
Quite similar to 10074 and 10667.
[edit]Summary
Given an n by n two-dimensional array arr (1 < = n < = 100) of arbitrary integers, find the maximum sub-array. Maximum sub-array is defined to be the sub-array whose sum of integer elements are the maximum possible.
[edit]Explanation
- First, calculate the vertical prefix sum (cumulative sum) for all columns (an O(n2) algorithm).
- Second, assume that the maximum sub-array will be between row a and row b, inclusive. There are only O(n2) a, b pairs such that a < b. Try each of them.
- Since we already have the vertical prefix sum for all columns, the sum of elements in arr[a..b][c] for column c can be computed in O(1) time. This allows us to imagine each column sum as if it is a single element of a one-dimensional array across all columns (one dimensional array with one row and n columns).
- There's an O(n) algorithm to compute the maximum sub-array for a one-dimensional array, known as Kadane's Algorithm.
- Applying the Kadane's algorithm inside each a and b combination gives the total complexity of O(n3).
/************************************************* * Amazon Interview Question: * * Problem: Maximum Sum Sub Matrix * * Visit: http://programming-puzzles.blogspot.in/ * * https://gist.github.com/ramprasadgopal/5364342 * * Author : Ramprasad Gopalakrishnan * * Language : C++ * **************************************************/ #include<iostream> #include<list> #include <algorithm> using namespace std; void getNextInputSet(); void printMatrix(int* matrix, int m1, int m2, int n1, int n2); int maximumSumSubArray(int array[], int size, int* maxStartRetVal, int* maxTailRetVal); /* ** input Matrix **/ int inputMatrix[10][10] = { {2,-1,2,-1,4,-5}, {2,8,2,-1,4,-5}, {2,-1,2,-1,4,-5}, {2,-1,2,-1,4,-5}, {2,-1,2,-1,4,-5}, {-2,-1,-2,-1,4,-5} }; int m = 6, n = 6; /* **sumMatrix: ** sumMatrix[i][j] gives the sum of column j till the ith row. */ int sumMatrix[10][10] = {{0}}; int main() { while(n > 0 && m >0) { for(int i = 1; i<=m;i++) { for(int j=0; j<n; j++) { sumMatrix[i][j] = sumMatrix[i-1][j] + inputMatrix[i-1][j]; } } cout<<"SumMatrix:\n"; printMatrix(*sumMatrix,0,m,0,n-1); int maxSum = sumMatrix[0][0], maxRowStart = 0, maxRowTail = 0, maxColStart =0, maxColTail = 0; cout<<"\n\nRij Matrix:\n"; for(int i=0; i<n; i++) { for(int j=i; j<n; j++) { /*r_ij matrix. * k th element in the matrix is the sum of all elements in * column k from row i to j in inputMatrix. */ int r_ij[10] = {0}; cout<<"R"<<i<<","<<j<<": "; for(int k=0; k<m; k++) { r_ij[k] = sumMatrix[j+1][k] - sumMatrix[i][k]; cout<<r_ij[k]<<" "; } cout<<endl; int maxStartForRij, maxTailForRij, maxSumRij; maxSumRij = maximumSumSubArray(r_ij, m, &maxStartForRij, &maxTailForRij); //update with tne new maxSum if(maxSumRij>maxSum) { maxSum = maxSumRij; maxRowStart = i; maxRowTail = j; maxColStart = maxStartForRij; maxColTail = maxTailForRij; } } } cout<<"\n\nAnswer:\n"<<"maxSum:"<<maxSum<<endl; printMatrix(*inputMatrix,maxRowStart,maxRowTail,maxColStart,maxColTail); getNextInputSet(); } } /** * This solves the sub problem of maximumSumSubArray. * i.e. returns the sub array with the maximum sum. * * refer: Kadane's algorithm. */ int maximumSumSubArray(int array[], int size, int* maxStartRetVal, int* maxTailRetVal) { int currentStart = 0, maxStart = 0, maxTail =0, currentSum = array[0], maxSum = array[0] ; for(int currentTail = 1;currentTail < size; currentTail++) { if(currentSum > 0) { currentSum += array[currentTail]; } else { currentStart = currentTail; currentSum = array[currentTail]; } if(currentSum > maxSum) { maxSum = currentSum; maxTail = currentTail; maxStart = currentStart; } } *maxStartRetVal = maxStart; *maxTailRetVal = maxTail; return maxSum; } /* * Utility functions. */ void getNextInputSet() { //get next set of inputs cout<<"\n\nEnter M N (0 0 to quit):"; cin>>m>>n; if(m>0 && n>0) { for(int i = 0; i<m;i++) { cout<<"Enter row " << i <<endl; for(int j=0; j<n; j++) cin>>inputMatrix[i][j]; } } } void printMatrix(int* matrix, int m1, int m2, int n1, int n2) { for(int i = 0; i<=m;i++) { for(int j=0; j<n; j++) { cout<<sumMatrix[i][j]<<" "; } cout<<endl; } }
[edit]Notes
An O(n4) algorithm can get an AC on UVa Online Judge. But anything above that won't.
[edit]Input
4 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 5 1 -61 5126 612 6 41 6 7 2 -7 1 73 -62 678 1 7 -616136 61 -83 724 -151 6247 872 2517 8135 4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
[ Be careful! This doesn't seem a valid sample. Problem statement says "The numbers in the array will be in the range [-127, 127]." ]
[edit]Output
-1 18589 15
[edit]Solution
posted on 2013-04-13 12:23 Step-BY-Step 阅读(202) 评论(0) 编辑 收藏 举报