CF946D Timetable 动态规划

预处理出每一行去掉$k$个1能获得的最小代价

之后做一次分组背包$dp$即可

预处理可以选择暴力枚举区间...

复杂度$O(n^3)$

#include <set>
#include <map>
#include <queue>
#include <vector>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
namespace remoon {
    #define re register
    #define ri register int
    #define ll long long
    #define tpr template <typename ra>
    #define rep(iu, st, ed) for(ri iu = st; iu <= ed; iu ++)
    #define drep(iu, ed, st) for(ri iu = ed; iu >= st; iu --)    
    #define gc getchar
    inline int read() {
        int p = 0, w = 1; char c = gc();
        while(c > '9' || c < '0') { if(c == '-') w = -1; c = gc(); }
        while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
        return p * w;
    }
    int wr[50], rw;
    #define pc(iw) putchar(iw)
    tpr inline void write(ra o, char c = '\n') {
        if(!o) pc('0');
        if(o < 0) o = -o, pc('-');
        while(o) wr[++ rw] = o % 10, o /= 10;
        while(rw) pc(wr[rw --] + '0');
        pc(c);
    }
    tpr inline void cmin(ra &a, ra b) { if(a > b) a = b; }
    tpr inline void cmax(ra &a, ra b) { if(a < b) a = b; } 
    tpr inline bool ckmin(ra &a, ra b) { return (a > b) ? a = b, 1 : 0; }
    tpr inline bool ckmax(ra &a, ra b) { return (a < b) ? a = b, 1 : 0; }
}
using namespace std;
using namespace remoon;

#define sid 505 int n, m, k; char s[sid][sid]; int pre[sid], suf[sid]; int f[sid][sid], g[sid][sid]; inline void Pre() { rep(i, 1, n) { memset(pre, 0, sizeof(pre)); memset(suf, 0, sizeof(suf)); rep(l, 1, m) pre[l] = pre[l - 1] + (s[i][l] == '1'); drep(l, m, 1) suf[l] = suf[l + 1] + (s[i][l] == '1'); if(pre[m] == 0) continue; memset(f[i], 56, sizeof(f[i])); rep(l, 1, m) rep(r, l, m) if(s[i][l] == '1' && s[i][r] == '1') cmin(f[i][pre[l - 1] + suf[r + 1]], r - l + 1); rep(j, pre[m], k) f[i][j] = 0; } } inline void DP() { memset(g, 56, sizeof(g)); g[0][0] = 0; rep(i, 1, n) { rep(i1, 0, k) rep(i2, 0, k) if(i1 + i2 <= k) cmin(g[i][i1 + i2], g[i - 1][i1] + f[i][i2]); } int ans = 2e9; rep(i, 0, k) cmin(ans, g[n][i]); write(ans); } int main() { n = read(); m = read(); k = read(); rep(i, 1, n) scanf("%s", s[i] + 1); Pre(); DP(); return 0; }

 

posted @ 2018-10-19 22:13  remoon  阅读(283)  评论(0编辑  收藏  举报