TensorFlow基础8——结果可视化
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #引入图形化包 def add_layer(input,in_size,out_size,activation_function=None): Weights = tf.Variable(tf.random_normal([in_size,out_size])) biases = tf.Variable(tf.zeros([1,out_size])+0.1) Wx_plus_b = tf.matmul(input,Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs x_data = np.linspace(-1,1,300)[:,np.newaxis] noise = np.random.normal(0,0.05,x_data.shape)#噪音 y_data = np.square(x_data)-0.5+noise xs = tf.placeholder(tf.float32,[None,1]) ys = tf.placeholder(tf.float32,[None,1]) l1 = add_layer(xs,1,10,activation_function=tf.nn.relu) predition = add_layer(l1,10,1,activation_function=None) loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-predition),reduction_indices=[1])) train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) #显示真实数据 fig = plt.figure() ax = fig.add_subplot(1,1,1) #显示图比例? ax.scatter(x_data,y_data) plt.ion() #如果在脚本中使用ion()命令开启了交互模式,没有使用ioff()关闭的话,则图像会一闪而过,并不会常留。要想防止这种情况,需要在plt.show()之前加上ioff()命令。
plt.show() for i in range(1001): sess.run(train_step,feed_dict={xs:x_data,ys:y_data}) if i % 50 == 0: #print(sess.run(loss,feed_dict={xs:x_data,ys:y_data})) try: ax.lines.remove(lines[0]) #消去之前的线条 except Exception: pass predition_value = sess.run(predition,feed_dict={xs:x_data}) lines = ax.plot(x_data,predition_value,'r-',lw=5) #画线 plt.pause(0.1) #暂停
运行结果:
真实结果为动图,模拟训练的过程。