随笔 - 101  文章 - 0  评论 - 2  阅读 - 11万

Pydantic模块学习

Pydantic 是一个 Python 库,用于数据验证和设置强类型数据结构。它是一个数据验证库,专门设计用于数据解析和验证,尤其在处理用户输入、API请求等情境中很有用。以下是 Pydantic 的一些主要特点和用法:

 

使用 Pydantic 主要涉及以下几个步骤:

  1. 定义数据模型: 创建一个继承自 pydantic.BaseModel 的类,定义模型的字段以及它们的类型。

数据验证和转换: 使用 Pydantic 模型进行数据验证和转换。Pydantic 会自动验证输入数据是否符合模型的定义(数据类型的校验依赖了模块typing),并尝试将输入数据转换为声明的数据类型。

下面是一个简单的示例,演示了如何使用 Pydantic:

 

 

上述代码首先定义了一个名为 User 的 Pydantic 模型,包含了 idusernameemail 这三个字段。然后,通过创建 User 类的实例时传入一个包含相应数据的字典,Pydantic 自动验证了数据并将其转换为声明的数据类型。

在实际应用中,Pydantic 经常与 Web 框架(如 FastAPI)一起使用,以处理和验证 API 请求的输入数据。以下是一个基于 FastAPI 的简单示例:

 在这个示例中,Item 是一个 Pydantic 模型,用于定义 API 请求体的数据结构。在 create_item 函数中,item: Item 参数表示从请求体中接收 JSON 数据,

并由 Pydantic 自动验证和转换为 Item 模型。这种方式使得在 API 中处理输入数据变得简单而可靠。

posted on   ClareBaby01  阅读(131)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· 什么是nginx的强缓存和协商缓存
· 一文读懂知识蒸馏
· Manus爆火,是硬核还是营销?
历史上的今天:
2020-12-12 pycharm 包下载源设置
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

点击右上角即可分享
微信分享提示