【python接口自动化】- logging日志模块 (转载)
logging模块介绍
前言:我们之前运行代码时都是将日志直接输出到控制台,而实际项目中常常需要把日志存储到文件,便于查阅,如运行时间、描述信息以及错误或者异常发生时候的特定上下文信息。
Python中自带的logging模块提供了标准的日志接口,在debug时使用往往会事半功倍。为什么不直接使用print去输出呢?这种方式对简单的脚本来说有用,对于复杂的系统来说相当于一个花瓶摆设,大量的print输出很容易被遗忘在代码里,并且print是标准输出,这很难从一堆信息里去判断哪些是你需要重点关注的。
logging的优势就在于可以控制日志的级别,把不需要的信息进行过滤,且可以决定它输出到什么地方、如何输出,还可以通过控制等级把特定等级的信息输出到特定的位置等。logging一共分为四个部分:
- 📘 Loggers:日志收集器,可供程序直接调用的接口,app通过调用提供的api来记录日志
- 📔 Handlers:日志处理器, 决定将日志记录分配至正确的目的地
- 📙 Filters:日志过滤器,对日志信息进行过滤, 提供更细粒度的日志是否输出的判断
- 📒 Formatters:日志格式器,制定最终记录打印的格式布局
日志等级
logging将logger的等级划分成5个level,由低到高分别是DEBUG、INFO、WARNING、ERROE、CRITICAL,默认是WARNING级别,CRITICAL最高,相关等级说明如下:
Level | 说明 |
---|---|
DEBUG | 输出详细的运行信息,主要用于调试,追踪问题时使用 |
INFO | 输出正常的运行的信息,一切按预期进行的情况 |
WARNING | 一些意想不到的或即将会发生的情况,比如警告:内存空间不足,但不影响程序运行 |
ERROR | 由于某些问题,程序的一些功能会受到影响,还可以继续运行 |
CRITICAL | 一个严重的错误,表明程序本身可能无法继续运行 |
这些等级的日志中低包含高,比如INFO,会收集INFO及以上等级的日志,DEBUG等级的日志将不进行收集。下面我们来输出这5个等级的日志:
import logging
"""
logging模块默认收集的日志是warning以上等级的
"""
a = 100
logging.debug(a)
logging.info('这是INFO等级的信息')
logging.warning('这是WARNING等级的信息')
logging.error('这是ERROR等级的信息')
logging.critical('这是CRITICAL等级的信息')
输出结果:
C:\software\python\python.exe D:/learn/test.py
WARNING:root:这是WARNING等级的信息
ERROR:root:这是ERROR等级的信息
CRITICAL:root:这是CRITICAL等级的信息
Process finished with exit code 0
日志收集器
日志是怎么被收集和输出的呢?答案就是日志收集器,设置一个收集器,把指等级的日志信息输出到指定的地方,控制台或文件等,其工作过程大致如下:
logging中默认的日志收集器是root,收集等级默认是WARNING,我们可以通过setLevel来改变它的收集等级。
# 获取默认的日志收集器root
my_log = logging.getLogger()
# 设置默认的日志收集器等级
my_log.setLevel("DEBUG") # 日志将全部被收集
a = 100
logging.debug(a)
logging.info('这是INFO等级的信息')
logging.warning('这是WARNING等级的信息')
logging.error('这是ERROR等级的信息')
logging.critical('这是CRITICAL等级的信息')
输出结果:
C:\software\python\python.exe D:/learn/test.py
DEBUG:root:100
INFO:root:这是INFO等级的信息
WARNING:root:这是WARNING等级的信息
ERROR:root:这是ERROR等级的信息
CRITICAL:root:这是CRITICAL等级的信息
Process finished with exit code 0
除了使用默认的日志收集器,我们也可以自己创建一个收集器logging.getLogger,如下:
import logging
my_logger = logging.getLogger('my_logger') # 创建logging对象
my_logger.setLevel('INFO') # 设置日志收集等级
a = 100
logging.debug(a)
logging.info('这是INFO等级的信息')
logging.warning('这是WARNING等级的信息')
logging.error('这是ERROR等级的信息')
logging.critical('这是CRITICAL等级的信息')
输出结果:
C:\software\python\python.exe D:/learn/test.py
WARNING:root:这是WARNING等级的信息
ERROR:root:这是ERROR等级的信息
CRITICAL:root:这是CRITICAL等级的信息
Process finished with exit code 0
日志处理器
上面例子中设置的收集器都是输出到控制台,除此我们还可以输出到文件中。
Handlers(处理器)的作用就是将logger发过来的信息进行准确地分配,送往正确的地方。比如,送往控制台、文件或者是两者。它决定了每个日志收集器的行为,是创建收集器之后需要配置的重点区域。每个Handler同样有一个日志级别,一个logger可以拥有多个handler也就是说logger可以根据不同的日志级别将日志传递给不同的handler。当然也可以相同的级别传递给多个handler,这就根据需求来灵活的配置了。
下面实例中设置了两个handler,一个是输出到控制台,一个是输出到文件中。关键代码:
logging.StreamHandler
:输出到控制台的处理器logging.FileHandler
:输出到文件的处理器addHandler
:添加处理器removeHandler
:移除处理器
import logging
my_logger = logging.getLogger('my_logger')
my_logger.setLevel('INFO')
# 创建一个输出到控制台的处理器
sh = logging.StreamHandler()
sh.setLevel("ERROR") # 设置处理器的输出等级
my_logger.addHandler(sh) # 将处理器绑定到日志收集器上
# 创建一个输出到文件的处理器
fh = logging.FileHandler("logs.logs", encoding="utf8")
fh.setLevel("INFO")
my_logger.addHandler(fh)
# my_logger.removeHandler(fh) # 移除处理器
a = 100
my_logger.debug(a)
my_logger.info('这是INFO等级的信息')
my_logger.warning('这是WARNING等级的信息')
my_logger.error('这是ERROR等级的信息')
my_logger.critical('这是CRITICAL等级的信息')
运行结果:
C:\software\python\python.exe D:/learn/test.py
这是ERROR等级的信息
这是CRITICAL等级的信息
Process finished with exit code 0
日志过滤器
Filters可以实现比level更复杂的过滤功能,限制只有满足过滤规则的日志才会被输出。比如我们定义了filter = logging.Filter('A.B')
,并将这个Filter添加到了一个Handler上,则使用该Handler的Logger中只有名字带A.B前缀的Logger才能输出其日志。下面是一个简单实例:
import logging
# 这是logger1
my_logger = logging.getLogger('A.C,B')
my_logger.setLevel('INFO')
# 这是logger2
my_logger2 = logging.getLogger('A.B')
my_logger2.setLevel('INFO')
# 创建一个处理器,两个logger都使用这个处理器
sh = logging.StreamHandler()
sh.setLevel("ERROR")
my_logger.addHandler(sh)
my_logger2.addHandler(sh)
# 创建一个过滤器绑到处理器上
my_filter = logging.Filter(name='A.B')
sh.addFilter(my_filter) # 把过滤器添加到处理器上
# sh2.removeFilter(my_filter) # 移除过滤器
my_logger.debug('这是logger1-DEBUG等级的信息')
my_logger.info('这是logger1-INFO等级的信息')
my_logger.warning('这是logger1-WARNING等级的信息')
my_logger.error('这是logger1-ERROR等级的信息')
my_logger.critical('这是logger1-CRITICAL等级的信息')
my_logger2.debug('这是logger2-DEBUG等级的信息')
my_logger2.info('这是logger2-INFO等级的信息')
my_logger2.warning('这是logger2-WARNING等级的信息')
my_logger2.error('这是logger2-ERROR等级的信息')
my_logger2.critical('这是logger2-CRITICAL等级的信息')
因为只有logger2满足过滤器的条件,因此只会输出logger2的日志,运行结果如下:
C:\software\python\python.exe D:/learn/test.py
这是logger2-ERROR等级的信息
这是logger2-CRITICAL等级的信息
Process finished with exit code 0
filter方法用于具体控制传递的record记录是否能通过过滤,如果该方法返回值为0表示不能通过过滤,非0表示可以通过过滤。
日志格式器
顾名思义,对日志进行格式化,因为常规的日志输出并不直观美观,通过美化日志的输出格式,可以让我们阅读起来更加舒服。
format常用格式如下:
%(name)s
: 打印收集器名称%(levelno)s
: 打印日志级别的数值%(levelname)s
: 打印日志级别名称%(pathname)s
: 打印当前执行程序的路径,其实就是sys.argv[0]%(filename)s
: 打印当前执行程序名%(funcName)s
: 打印日志的当前函数%(lineno)d
: 打印日志的当前行号%(asctime)s
: 打印日志的时间%(thread)d
: 打印线程ID%(threadName)s
: 打印线程名称%(process)d
: 打印进程ID%(message)s
: 打印日志信息
import logging
my_logger = logging.getLogger('A.C,B')
my_logger.setLevel('INFO')
# 创建一个处理器
sh = logging.StreamHandler()
sh.setLevel("ERROR")
my_logger.addHandler(sh)
# 设置一个格式,并设置到处理器上
formatter = logging.Formatter('%(asctime)s - [%(filename)s-->line:%(lineno)d] - %(levelname)s: %(message)s')
sh.setFormatter(formatter)
my_logger.debug('这是logger1-DEBUG等级的信息')
my_logger.info('这是logger1-INFO等级的信息')
my_logger.warning('这是logger1-WARNING等级的信息')
my_logger.error('这是logger1-ERROR等级的信息')
my_logger.critical('这是logger1-CRITICAL等级的信息')
运行结果:
C:\software\python\python.exe D:/learn/test.py
2020-08-01 18:28:43,645 - [test.py-->line:17] - ERROR: 这是logger1-ERROR等级的信息
2020-08-01 18:28:43,645 - [test.py-->line:18] - CRITICAL: 这是logger1-CRITICAL等级的信息
Process finished with exit code 0
日志滚动
如果你用 FileHandler 存储日志,文件的大小会随着时间推移而不断增大,最终有一天它会占满你所有的磁盘空间。Python 的 logging 模块提供了两个支持日志滚动的 FileHandler
类,分别是 RotatingFileHandler 和 TimedRotatingFileHandler,它就可以解决这个尴尬的问题。
- 🍬 RotatingFileHandler 的滚动时刻是日志文件的大小达到一定值,当达到指定值的时候,RotatingFileHandler会将日志文件重命名存档,然后打开一个新的日志文件。
- 🍬 TimedRotatingFileHandler 是当某个时刻到来时就进行滚动,同 RotatingFileHandler 一样,当滚动时机来临时,TimedRotatingFileHandler 会将日志文件重命名存档,然后打开一个新的日志文件。
在实际应用中,我们通常会根据时间进行滚动,以下实例也以时间滚动为例,按大小滚动的同理:
import logging
from logging.handlers import TimedRotatingFileHandler
my_logger = logging.getLogger('A.C,B')
my_logger.setLevel('INFO')
# 创建一个处理器,使用时间滚动的文件处理器
log_file_handler = TimedRotatingFileHandler(filename='log.log', when='D', interval=1, backupCount=10)
# log_file_handler.suffix = "%Y-%m-%d"
# log_file_handler.extMatch = re.compile(r"^\d{4}-\d{2}-\d{2}.log$")
log_file_handler.setLevel("ERROR")
my_logger.addHandler(log_file_handler)
# 设置一个格式,并设置到处理器上
formatter = logging.Formatter('%(asctime)s - [%(filename)s-->line:%(lineno)d] - %(levelname)s: %(message)s')
log_file_handler.setFormatter(formatter)
my_logger.debug('这是logger1-DEBUG等级的信息')
my_logger.info('这是logger1-INFO等级的信息')
my_logger.warning('这是logger1-WARNING等级的信息')
my_logger.error('这是logger1-ERROR等级的信息')
my_logger.critical('这是logger1-CRITICAL等级的信息')
参数说明:
filename
:日志文件名;when
:是一个字符串,用于描述滚动周期的基本单位,字符串的值及意义如下:- S - Seconds
- M - Minutes
- H - Hours
- D - Days
- midnight - roll over at midnight
- W{0-6} - roll over on a certain day; 0 - Monday
interval
: 滚动周期,单位由when指定,比如:when='D',interval=1,表示每天产生一个日志文件;backupCount
: 表示日志文件的保留个数;
除了上述参数之外,TimedRotatingFileHandler还有两个比较重要的成员变量,它们分别是suffix和extMatch。suffix是指日志文件名的后缀,suffix中通常带有格式化的时间字符串,filename和suffix由“.”连接构成文件名(例如:filename="test", suffix="%Y-%m-%d.log",生成的文件名为test.2020-08-01.log。extMatch是一个编译好的正则表达式,用于匹配日志文件名的后缀,它必须和suffix是匹配的,如果suffix和extMatch匹配不上的话,过期的日志是不会被删除的。比如,suffix=“%Y-%m-%d.log”, extMatch的只能是re.compile(r"^\d{4}-\d{2}-\d{2}.log$")。默认情况下,在TimedRotatingFileHandler对象初始化时,suffxi和extMatch会根据when的值进行初始化:
S:suffix="%Y-%m-%d_%H-%M-%S",extMatch=r"\^d{4}-\d{2}-\d{2}_\d{2}-\d{2}-\d{2}";
M:suffix="%Y-%m-%d_%H-%M",extMatch=r"^\d{4}-\d{2}-\d{2}_\d{2}-\d{2}";
H:suffix="%Y-%m-%d_%H",extMatch=r"^\d{4}-\d{2}-\d{2}_\d{2}";
D:suffxi="%Y-%m-%d",extMatch=r"^\d{4}-\d{2}-\d{2}";
MIDNIGHT:"%Y-%m-%d",extMatch=r"^\d{4}-\d{2}-\d{2}";
W:"%Y-%m-%d",extMatch=r"^\d{4}-\d{2}-\d{2}";
如果对日志文件名没有特殊要求的话,可以不用设置suffix和extMatch,如果需要,一定要让它们匹配上。
模块封装
一次封装,一劳永逸,之后直接调用即可,封装内容按需。
import logging
from logging.handlers import TimedRotatingFileHandler
class MyLogger(object):
@staticmethod
def create_logger():
my_logger = logging.getLogger("my_logger")
my_logger.setLevel("DEBUG")
# 控制台处理器
stream_handler = logging.StreamHandler()
stream_handler.setLevel("ERROR")
my_logger.addHandler(stream_handler)
# 使用时间滚动的文件处理器
log_file_handler = TimedRotatingFileHandler(filename='log.log', when='D', interval=1, backupCount=10)
log_file_handler.setLevel("INFO")
my_logger.addHandler(log_file_handler)
formatter = logging.Formatter('%(asctime)s - [%(filename)s-->line:%(lineno)d] - %(levelname)s: %(message)s')
stream_handler.setFormatter(formatter)
log_file_handler.setFormatter(formatter)
return my_logger