python3 Tornado + Celery + RabbitMQ

celery有多坑,能坑的你亲妈都不认识,信我!!!

 

声明:代码是从项目中截取的, 为进行测试

 

使用Celery任务队列,Celery 只是一个任务队列,需要一个broker媒介,将耗时的任务传递给Celery任务队列执行,执行完毕将结果通过broker媒介返回。官方推荐使用RabbitMQ作为消息传递,redis也可以

 

一、Celery 介绍:概念网上一搜一堆,自己百度去

注意:
1、当使用RabbitMQ时,需要按照pika第三方库,pika0.10.0存在bug,无法获得回调信息,需要按照0.9.14版本即可
2、tornado-celery 库比较旧,无法适应Celery的最新版,会导致报无法导入task Producter包错误,只需要将celery版本按照在3.0.25就可以了
 

二、安装、配置

 

python版本3.5.4 别用3.6, 也别用3.7,很多不支持,巨坑无比
redis 5.0.8.msi ----------- rabbitmq 这个应该没什么差异


pip install redis
pip3 install tornado==5.1.1  或者4.1
pip3 install celery==3.1
pip3 install pika==0.9.14
pip3 install tornado-celery


 

 三、window下面测试最简单celery有返回值的实例--时间:2020/7/17

 用redis和rabbitmq效率差的不是一点半点

tasks.py

from celery import Celery
#配置好celery的backend和broker
# app = Celery('tasks',  backend='redis://localhost:6379/0', broker='redis://localhost:6379/0')
# app = Celery('tasks',  backend='redis://localhost:6379', broker='redis://localhost:6379')
app = Celery('tasks', backend='amqp://localhost:5672', broker='amqp://localhost:5672')
# app.conf.CELERY_RESULT_BACKEND = "redis://localhost:6379/0" # app.conf.CELERY_RESULT_BACKEND = "redis" # app.conf.CELERY_ACCEPT_CONTENT = ['application/json'] # app.conf.CELERY_TASK_SERIALIZER = 'json' # app.conf.CELERY_RESULT_SERIALIZER = 'json' # app.conf.BROKER_HEARTBEAT = 30 # app.conf.CELERY_IGNORE_RESULT = False # this is less important @app.task #普通函数装饰为 celery task def add(x, y): return x + y

 

#trigger.py
import time
from tasks import add

a = time.time()
result = add.delay(4, 4) #不要直接 add(4, 4),这里需要用 celery 提供的接口 delay 进行调用
# result = add.apply_async((4, 4)) #不要直接 add(4, 4),这里需要用 celery 提供的接口 apply_async 进行调用
print(result.ready())
# while not result.ready():
#     time.sleep(1)

print('task done: {0}'.format(result.get()))
print(time.time() - a)
main.py

 

celery启动命令当前目录下

celery -A tasks worker --loglevel=info

 

升级版window下面测试最简单celery有返回值的实例(简单的调整了一下)

  

 

 

 config.py

 

# file_name=init_celery.py
# coding: utf-8
from celery import Celery

BROKER_URL = 'amqp://localhost:5672'
BACKEND_URL = 'amqp://localhost:5672'

# Add tasks here
CELERY_IMPORTS = (
    'tasks',
)

celery = Celery('celery',
                broker=BROKER_URL,
                backend=BACKEND_URL,
                include=CELERY_IMPORTS, )

celery.conf.update(
    CELERY_ACKS_LATE=True,  # 允许重试
    CELERY_ACCEPT_CONTENT=['pickle', 'json'],
    CELERYD_FORCE_EXECV=True,  # 有些情况可以防止死锁
    CELERYD_CONCURRENCY=4,  # 设置并发worker数量
    CELERYD_MAX_TASKS_PER_CHILD=500,  # 每个worker最多执行500个任务被销毁,可以防止内存泄漏
    BROKER_HEARTBEAT=0,  # 心跳
    CELERYD_TASK_TIME_LIMIT=12 * 30,  # 超时时间
)

main.py

from tasks import add


def notify(a, b):
    result = add.delay(a, b)
    print("ready: ", result.ready())

    print('return data: {0}'.format(result.get()))
    return result


if __name__ == '__main__':
    import time

    a = time.time()
    haha = notify(6, 7)
    print("status: ", haha.status)
    print("id: ", haha.id)
    print("used time: %s s" % (time.time() - a))

tasks.py

from config import celery


# 普通函数装饰为 celery task
@celery.task
def add(x, y):
    return x + y

run_celery.sh  --当前目录下执行

celery -A config worker --loglevel=info

 

 Python3.5.4 Tornado + Celery + Redis 得到Celery返回值(时间:2020/7/18记录)看到这,后面的就不用看了,这个例子最新

 这个问题困扰我很久,今天终于解决了,为什么呢?因为呀过几天有个面试,可能涉及这个问题,所以熬了几天终于把这个问题给解决了

其实这个问题已经拖了几年了,原因是以前我用的是tornado+celery+rabbitmq,不需要返回值,直接去处理任务就好了,可是当时思考我如果需要拿返回值怎么办

后来就在这个地方卡住了,怎么也没找到正确的解决方法,因为一直认为是自己的写法或者没搞明白原理,而没有间接的去寻找解决方案

首先先把Tornado + Celery + RabbitMQ得不到返回值的解决方案说一下

用RabbitMQ的好处是,RabbitMQ的效率比Redis的效率要高,但为什么redis能拿到返回值呢
因为pika,它连接了redis,而celery把值存储到了redis,这个时候生成了有个key存储到redis,然后tornado这面在从redis取值,知道了这个原理,那后面也就好说了
tornado + celery + redis的redis这里既充当了消息队列,还用到了redis的缓存 解决方案: tornado也生成一个key,给celery,然后celery的task的函数(例如add)把返回值存储到缓存里面,tornado在去取就行了呀 rabbitmq充当消息队列,redis充当缓存角色

版本


python版本3.5.4 别用3.6, 也别用3.7,很多不支持,巨坑无比
redis 5.0.8.msi ----------- rabbitmq 这个应该没什么差异


pip install redis
pip3 install tornado==5.1.1  或者4.1
pip3 install celery==3.1
pip3 install pika==0.9.14
pip3 install tornado-celery    

 

 

 app.py  --- 这里tcelery感觉并没有起到什么作用,如果谁有时间可以进行一下测试,看看

import tornado.ioloop
import tornado.web
from tornado import gen
from tornado.gen import coroutine
from tornado.web import asynchronous
import tcelery
from tasks import test

tcelery.setup_nonblocking_producer()  # 设置为非阻塞生产者,否则无法获取回调信息

class MainHandler(tornado.web.RequestHandler):
    @coroutine
    @asynchronous
    def get(self):
        import time
        a = time.time()
        # result = yield torncelery.async_me(test, "hello world") #不能这么用
        # result = yield gen.Task(test.apply_async, args=["hello11"]) # 不能这么用

        result = test.delay("hello world")
        print("result: ", result.get())
        print("ready: ", result.ready())
        print("status: ", result.status)
        print("id: ", result.id)

        b = time.time()
        print(b-a)
        self.write("%s" % result.get())
        self.finish()

application = tornado.web.Application([
    (r"/", MainHandler),
])

if __name__ == "__main__":
    application.listen(8888)
    tornado.ioloop.IOLoop.instance().start()

 

 tasks.py

from celery import Celery
import time

celery = Celery('tasks',  backend='redis://localhost:6379', broker='redis://localhost:6379')
# celery = Celery('tasks',  backend='amqp://localhost:5672', broker='amqp://localhost:5672')
celery.conf.update(
    CELERY_ACKS_LATE=True,  # 允许重试
    CELERY_ACCEPT_CONTENT=['pickle', 'json'],
    CELERYD_FORCE_EXECV=True,  # 有些情况可以防止死锁
    CELERYD_CONCURRENCY=4,  # 设置并发worker数量
    CELERYD_MAX_TASKS_PER_CHILD=500,  # 每个worker最多执行500个任务被销毁,可以防止内存泄漏
    BROKER_HEARTBEAT=60,  # 心跳
    CELERYD_TASK_TIME_LIMIT=12 * 30,  # 超时时间
)

@celery.task
def test(strs):
    print("str:", strs)
    return strs

 

这里有一个问题,就是响应时间,第一次是3s,以后每次都是0.5s,如何提升效率

 

 

 

 

 

配置详情

 

单个参数配置:
app.conf.CELERY_RESULT_BACKEND = ‘redis://localhost:6379/0‘ 

 

多个参数配置:
app.conf.update(
     CELERY_BROKER_URL = ‘amqp://guest@localhost//‘,
     CELERY_RESULT_BACKEND = ‘redis://localhost:6379/0‘
 )

 

从配置文件中获取:(将配置参数写在文件app.py中)

 BROKER_URL=‘amqp://guest@localhost//
 CELERY_RESULT_BACKEND=‘redis://localhost:6379/0‘
 app.config_from_object(‘celeryconfig‘)

 

三、案例  --这个也有问题了

启动一个Celery 任务队列,也就是消费者:

 from celery import Celery
 celery = Celery(‘tasks‘, broker=‘amqp://guest:guest@119.29.151.45:5672‘, backend=‘amqp‘)  使用RabbitMQ作为载体, 回调也是使用rabbit作为载体
 
 @celery.task(name=‘doing‘)   #异步任务,需要命一个独一无二的名字
 def doing(s, b):
     print(‘开始任务‘)
     logging.warning(‘开始任务--{}‘.format(s))
     time.sleep(s)
     return s+b

 

命令行启动任务队列守护进程,当队列中有任务时,自动执行 (命令行可以放在supervisor中管理)
--loglevel=info --concurrency=5
记录等级,默认是concurrency:指定工作进程数量,默认是CPU核心数

 

启动任务生产者 -- 当初写这个代码的时候没想好可能,现在的重新弄一下了

#!/usr/bin/env python
# -*- coding:utf-8 -*-

import tcelery
from tornado.web import RequestHandler
import tornado

tcelery.setup_nonblocking_producer()  # 设置为非阻塞生产者,否则无法获取回调信息


class MyMainHandler(RequestHandler):
    @tornado.web.asynchronous
    @tornado.gen.coroutine
    def get(self, *args, **kwargs):
        print('begin')
        result = yield tornado.gen.Task(sleep.apply_async, args=[10])  # 使用yield 获取异步返回值,会一直等待但是不阻塞其他请求
        print('ok - -{}'.format(result.result))  # 返回值结果

        # sleep.apply_async((10, ), callback=self.on_success)
        # print(‘ok -- {}‘.format(result.get(timeout=100)))#使用回调的方式获取返回值,发送任务之后,请求结束,所以不能放在处理tornado的请求任务当中,因为请求已经结束了,与客户端已经断开连接,无法再在获取返回值的回调中继续向客户端返回数据

        # result = sleep.delay(10)    #delay方法只是对apply_async方法的封装而已
        # data = result.get(timeout=100)  #使用get方法获取返回值,会导致阻塞,相当于同步执行


        def on_success(self, response):  # 回调函数
            print('Ok - - {}'.format(response))

 

=======================

#!/usr/bin/env python

# -*-  coding:utf-8 -*-

from tornado.web import Application



from tornado.ioloop import IOLoop



import tcelery

from com.analysis.handlers.data_analysis_handlers import *

from com.analysis.handlers.data_summary_handlers import *

from com.analysis.handlers.data_cid_sumjson_handler import Cid_Sumjson_Handler

from com.analysis.handlers.generator_handlers import GeneratorCsv, GeneratorSpss





Handlers = [



    (r"/single_factor_variance_analysis/(.*)", SingleFactorVarianceAnalysis), # 单因素方差检验





]



if __name__ == "__main__":

    tcelery.setup_nonblocking_producer()

    application = Application(Handlers)

    application.listen(port=8888, address="0.0.0.0")

    IOLoop.instance().start()
server

 

#!/usr/bin/env python

# -*-  coding:utf-8 -*-



import tornado.gen

import tornado.web

from com.analysis.core.base import BaseAnalysisRequest

from com.analysis.tasks.data_analysis import *





class SingleFactorVarianceAnalysis(BaseAnalysisRequest):

    @tornado.gen.coroutine

    def get(self, *args, **kwargs):

        response = yield self.celery_task(single_factor_variance_analysis.apply_async, params=args)

        print(response.result)

        self.write(response.result[2])
handler

 

#!/usr/bin/env python

# -*-  coding:utf-8 -*-



from collections import defaultdict



import pandas as pd

import numpy as np

import pygal

import tornado.gen

from pygal.style import LightStyle

from tornado.web import RequestHandler

import json



from com.analysis.db.db_engine import DBEngine

from com.analysis.utils.log import LogCF

from com.analysis.handlers.data_cid_sumjson_handler import cid_sumjson





class BaseRequest(RequestHandler):

    def __init__(self, application, request, **kwargs):

        super(BaseRequest, self).__init__(application, request, **kwargs)





class BaseAnalysisRequest(BaseRequest):

    def __init__(self, application, request, **kwargs):

        super(BaseAnalysisRequest, self).__init__(application, request, **kwargs)



    @tornado.gen.coroutine

    def celery_task(self, func, params, queue="default_analysis"):

        args_list = list(params)

        args_list.insert(0, "")

        response = yield tornado.gen.Task(func, args=args_list, queue=queue)

        raise tornado.gen.Return(response)
basehandler

 

#!/usr/bin/env python

# -*-  coding:utf-8 -*-





from celery import Celery



from com.analysis.core.chi_square_test import CST

from com.analysis.generator.generator import GeneratorCsv, GeneratorSpss



celery = Celery(

    'com.analysis.tasks.data_analysis',

    broker='amqp://192.168.1.1:5672',

    include='com.analysis.tasks.data_analysis'

)

celery.conf.CELERY_RESULT_BACKEND = "amqp://192.168.1.1:5672"

celery.conf.CELERY_ACCEPT_CONTENT = ['application/json']

celery.conf.CELERY_TASK_SERIALIZER = 'json'

celery.conf.CELERY_RESULT_SERIALIZER = 'json'

celery.conf.BROKER_HEARTBEAT = 30

celery.conf.CELERY_IGNORE_RESULT = False  # this is less important

logger = Logger().getLogger()





@celery.task()

def single_factor_variance_analysis(*args):

    return SFV().do_(*args)
task

 

 

posted @ 2018-09-04 17:17  我当道士那儿些年  阅读(4105)  评论(1编辑  收藏  举报