Python模块之json,pickle,shelve:序列化

序列化模块

之前我们学习过用eval内置方法可以将一个字符串转成python对象,不过,eval方法是有局限性的,对于普通的数据类型,json.loads和eval都能用,但遇到特殊类型的时候,eval就不管用了,所以eval的重点还是通常用来执行一个字符串表达式,并返回表达式的值。

#---转换类型
​
d={"name":"yuan"}
​
s=str(d)
​
print(type(s))
​
d2=eval(s)
​
print(d2[1])
​
with open("test") as f:
​
    for i in f :
​
        if type(eval(i.strip()))==dict:
            print(eval(i.strip())[1])
            
# 计算
​
print(eval("12*7+5-3"))

什么是序列化?

我们把对象(变量)从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上。反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。

json模块

如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。

JSON表示的对象就是标准的JavaScript语言的对象一个子集,JSON和Python内置的数据类型对应如下:

JSON类型Python类型
{} dict
[] list
"string" str
1234.56 int/float
true/false True/False
null None
import json
i=10
s='hello'
t=(1,4,6)
l=[3,5,7]
d={'name':"yuan"}
​
json_str1=json.dumps(i)
json_str2=json.dumps(s)
json_str3=json.dumps(t)
json_str4=json.dumps(l)
json_str5=json.dumps(d)
​
print(json_str1)   #'10'
print(json_str2)   #'"hello"'
print(json_str3)   #'[1, 4, 6]'
print(json_str4)   #'[3, 5, 7]'
print(json_str5)   #'{"name": "yuan"}'

python在文本中的使用:

#----------------------------序列化
import json
​
dic={'name':'alvin','age':23,'sex':'male'}
print(type(dic))#<class 'dict'>
​
data=json.dumps(dic)
print("type",type(data))#<class 'str'>
print("data",data)
​
​
f=open('序列化对象','w')
f.write(data)  #-------------------等价于json.dump(dic,f)
f.close()
​
​
#-----------------------------反序列化<br>
import json
f=open('序列化对象')
new_data=json.loads(f.read())#  等价于data=json.load(f)
​
print(type(new_data))

pickle模块

##----------------------------序列化
import pickle
 
dic={'name':'alvin','age':23,'sex':'male'}
 
print(type(dic))#<class 'dict'>
 
j=pickle.dumps(dic)
print(type(j))#<class 'bytes'>
 
 
f=open('序列化对象_pickle','wb')#注意是w是写入str,wb是写入bytes,j是'bytes'
f.write(j)  #-------------------等价于pickle.dump(dic,f)
 
f.close()
#-------------------------反序列化
import pickle
f=open('序列化对象_pickle','rb')
 
data=pickle.loads(f.read())#  等价于data=pickle.load(f)
 
print(data['age'])    

shelve模块

shelve模块比pickle模块简单,只有一个open函数,返回类似字典的对象,可读可写;key必须为字符串,而值可以是python所支持的数据类型

import shelve
  
f = shelve.open(r'shelve.txt')
  
# f['stu1_info']={'name':'alex','age':'18'}
# f['stu2_info']={'name':'alvin','age':'20'}
# f['school_info']={'website':'oldboyedu.com','city':'beijing'}
#
#
# f.close()
  
print(f.get('stu_info')['age'])

 

posted @ 2017-06-22 21:11  戴维德  阅读(183)  评论(0编辑  收藏  举报